若tanα,tanβ是方程x2+5x-6=0的兩根,則tan(α+β)=
 
考點(diǎn):兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:由條件利用韋達(dá)定理可得tanα+tanβ=-5,tanα•tanβ=-6,再根據(jù) tan(α+β)=
tanα+tanβ
1-tanαtanβ
,計(jì)算求得結(jié)果.
解答: 解:由題意可得 tanα+tanβ=-5,tanα•tanβ=-6,
∴tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
-5
1+6
=-
5
7
,
故答案為:-
5
7
點(diǎn)評:本題主要考查韋達(dá)定理,兩角和的正切公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2-3x+2<0的解集為A={x|1<x<b}
(1)求a,b的值;
(2)求函數(shù)f(x)=(2a+b)x-
9
(a-b)x
在區(qū)間[3,5]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-
a
x
.(a∈R)
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)若a=-
2
,求函數(shù)f(x)在[1,e]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l經(jīng)過點(diǎn)A(-2,2)且與直線y=x+6在y軸上有相同的截距,則直線l的一般式方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=2,an+1=4an-3n+1,n∈N*,則數(shù)列{an}的前n項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1~10十個(gè)整數(shù)中一次取出4個(gè)數(shù),并由小到大排列,以X表示這4個(gè)數(shù)中第二個(gè),則X=8時(shí)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(0,π),cosα=-
4
5
,則sin(α-
π
3
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn)O,極軸與x軸的非負(fù)半軸重合.若直線l的極坐標(biāo)方程為θ=
π
3
(ρ∈R),曲線C的參數(shù)方程為
x=2cosθ
y=1+cos2θ
(θ為參數(shù),且θ∈R,則直線l與曲線C的交點(diǎn)的直角坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M的圓心在直線x-y-4=0上并且經(jīng)過圓x2+y2+6x-4=0與圓x2+y2+6y-28=0的交點(diǎn),則圓M的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

同步練習(xí)冊答案