點(diǎn)P(x,y)在不等式組
x-2≤0
y-1≤0
x+2y-2≥0
表示的平面區(qū)域上運(yùn)動,則z=y-x的最大值是
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:本題考查的知識點(diǎn)是線性規(guī)劃,處理的思路為:根據(jù)已知的約束條件畫出滿足約束條件
x-2≤0
y-1≤0
x+2y-2≥0
的可行域,再用角點(diǎn)法,求出目標(biāo)函數(shù)的最大值.
解答: 解:滿足約束條件
x-2≤0
y-1≤0
x+2y-2≥0
的可行域如下圖中陰影部分所示:

∵目標(biāo)函數(shù)z=y-x,
∴ZA=1,ZB=-2,ZC=-1,
故z=y-x的最大值是1,
故答案為:1
點(diǎn)評:用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標(biāo)函數(shù)是關(guān)鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標(biāo)函數(shù).然后將可行域各角點(diǎn)的值一一代入,最后比較,即可得到目標(biāo)函數(shù)的最優(yōu)解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在一個口袋中裝有12個大小相同的黑球、白球和紅球.已知從袋中任意摸出1個球,得到紅球的概率是
1
3
,從袋中任意摸出2個球,至少得到一個黑球的概率是
5
11
.求:
(1)帶中黑球的個數(shù);
(2)從袋中任意摸出3個球,至少得到2個黑球的概率.(結(jié)果用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:A+B=
π
4
,且A≠
π
2
+kπ,B
π
2
+kπ,k∈Z,則(1+tanA)(1+tanB)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x>0時,函數(shù)y=(a2-8)x的值恒大于1,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點(diǎn)作一條直線交拋物線于A,B兩點(diǎn),若線段AB的中點(diǎn)M的橫坐標(biāo)為2,則|AB|等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P是△ABC所在平面外一點(diǎn),O為點(diǎn)P在平面ABC內(nèi)的射影,若PA=PB=PC,則點(diǎn)O是△ABC的
 
心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|4-x|-m有3個零點(diǎn)分別為x1,x2,x3,則x1+x2+x3的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β是兩個不同的平面,?是一條直線,則下列命題中正確的是(  )
A、若α⊥β,??α,則?⊥β
B、若?∥α,α∥β,則?∥β
C、若?⊥α,?∥β,則α⊥β
D、若α⊥β,?⊥β,則?∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將標(biāo)號為1、2、3、4、5、6的6張卡片放入3個不同的信封中,若每個信封放2張,其中標(biāo)號為3,6的卡片放入同一信封,則不同的方法共有(  )種.
A、54B、18C、12D、36

查看答案和解析>>

同步練習(xí)冊答案