【題目】已知定義域為R的奇函數(shù)f(x)滿足:當(dāng)x>0時,f(x)=lnx,則函數(shù)g(x)=f(x)﹣sin4x的零點的個數(shù)為

【答案】7
【解析】解:函數(shù)f(x)=sin4x是奇函數(shù),且它的周期為 = ,
∵g(x)=f(x)﹣sin4x=0,
∴函數(shù)g(x)=f(x)﹣sin4x的零點的個數(shù)為
相當(dāng)于f(x)=sin4x的零點個數(shù),
即f(x)與sin4x的交點個數(shù),
∴畫出二者圖象,由數(shù)形結(jié)合,
可知,在(﹣∞,0)有3個交點,0處有一個交點,(0,+∞)有3個交點,
故共有7個交點.
∴函數(shù)g(x)=f(x)﹣sin4x的零點的個數(shù)為7個,
所以答案是:7.

【考點精析】關(guān)于本題考查的函數(shù)奇偶性的性質(zhì),需要了解在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)對于任意實數(shù)x,不等式|x+7|+|x﹣1|≥m恒成立.
(1)求m的取值范圍;
(2)當(dāng)m取最大值時,解關(guān)于x的不等式:|x﹣3|﹣2x≤2m﹣12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,⊙O內(nèi)切于△ABC的邊于D,E,F(xiàn),AB=AC,連接AD交⊙O于點H,直線HF交BC的延長線于點G.

(Ⅰ)求證:圓心O在直線AD上;

(Ⅱ)求證:點C是線段GD的中點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,若cos(2B+C)+2sinAsinB=0,則△ABC中一定是(
A.銳角三角形
B.鈍角三角形
C.直角三角形
D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 點(n, )在直線y= x+ 上. (Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn= ,求數(shù)列{bn}的前n項和為Tn , 并求使不等式Tn 對一切n∈N*都成立的最大正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】能構(gòu)成映射,下列說法正確的有 ( )

(1)A中的任一元素在B中必須有像且唯一;

(2)A中的多個元素可以在B中有相同的像;

(3)B中的多個元素可以在A中有相同的原像;

(4)像的集合就是集合B.

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為落實《課標(biāo)》所倡導(dǎo)的課程理念,切實提高學(xué)生的綜合素質(zhì),某校高二年級開設(shè)“趣味數(shù)學(xué)”、“趣味物理”、“趣味化學(xué)”3門任意選修課程,供年級300位文科生自由選擇2門(不可多選或少選),選課情況如下表:

(Ⅰ)為了解學(xué)生選課情況,現(xiàn)采用分層抽樣方法抽取了三科作業(yè)共50本,統(tǒng)計發(fā)現(xiàn)“趣味物理”有18本,試根據(jù)這一數(shù)據(jù)估計, 的值;

(Ⅱ)為方便開課,學(xué)校要求, ,計算的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點.

(1)求證:AC1∥平面CDB1
(2)求證:AC⊥BC1
(3)求直線AB1與平面BB1C1C所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,集合M={x|f(x)=0}={x1 , x2 , x3 , x4 , x5}N* , 設(shè)c1≥c2≥c3 , 則c1﹣c3=(
A.6
B.8
C.2
D.4

查看答案和解析>>

同步練習(xí)冊答案