如圖,用四種不同顏色給圖中的ABCDEF六個點涂色,要求每個點涂一種顏色,且圖中每條線段的兩個端點涂不同的顏色,而且四種不同顏色要全部用完,則不同的涂色方法共有(  )種.
A、144B、216
C、264D、360
考點:計數(shù)原理的應(yīng)用
專題:應(yīng)用題,排列組合
分析:由題意,4種顏色都用到,先給A、B、C三點涂色,再給D、E、F涂色,由乘法原理得結(jié)論.
解答: 解:由題意,4種顏色都用到,先給A、B、C三點涂色,有
A
3
4
種涂法,再給D、E、F涂色,因為D.E.F中必有一點用到第4種顏色
C
1
3
,所以另外兩點用到A.B.C三點所用顏色中的兩種
C
2
3
,此時涂法確定,
由乘法原理得
A
3
4
C
1
3
C
2
3
=216種.
故選:B.
點評:本題主要考查排列組合的基礎(chǔ)知識,正確分步是關(guān)鍵,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

二項式(1+sinx)n的展開式中,末尾兩項的系數(shù)之和為7,且系數(shù)最大的一項的值為
5
2
,則x在[0,2π]內(nèi)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點A(2,1),且與直線2x-y+3=0平行的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)全集U=R,集合A={x|x2-2x<0},集合B={x|y=lg(x-1)},則A∩B=( 。
A、{x|1≤x<2}
B、{x|x>2}
C、{x|x>1}
D、{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2+1,對任意x∈(0,+∞),f(
x
m
)-2m2f(x)≤f(x-2)-2f(m)恒成立,則實數(shù)m的取值范圍是( 。
A、(-∞,-
2
2
]∪[1,+∞)
B、(-∞,-
2
2
]∪[
2
2
,+∞)
C、(-∞,-1]∪[
2
2
,+∞)
D、(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={1,2,3,4,5,6,7,8,9,10},集合A={y∈Z|y=log2x,x∈(1,32)},B={1,2,3},則A∩∁UB=(  )
A、{1,2,3}
B、{1,2,3,4}
C、{4}
D、{4,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點M(2,1)且在坐標軸上的截距相等的直線共有( 。
A、1條B、2條C、3條D、4條

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩點M(-1,0),N(1,0),若直線y=k(x-2)上至少存在三個點P,使得△MNP是直角三角形,則實數(shù)k的取值范圍是(  )
A、[-
1
3
,0)∪(0,
1
3
]
B、[-
3
3
,0)∪(0,
3
3
]
C、[-
1
3
,
1
3
]
D、[-5,5]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

兩位工人加工同一種零件共100個,甲加工了40個,其中35個是合格品,乙加工了60個,其中有50個合格,令A事件為”從100個產(chǎn)品中任意取一個,取出的是合格品”,B事件為”從100個產(chǎn)品中任意取一個,取到甲生產(chǎn)的產(chǎn)品”,則P(A|B)等于( 。
A、
2
5
B、
35
100
C、
7
8
D、
5
7

查看答案和解析>>

同步練習冊答案