已知數(shù)列{an}是首項(xiàng)為a1=1的等差數(shù)列,其前n項(xiàng)和為Sn,數(shù)列{bn}是首項(xiàng)b1=2的等比數(shù)列,且b2S2=16,b1b3=b4
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{cn}滿足 ,求數(shù)列{cn}的前n項(xiàng)和Tn
【答案】分析:(Ⅰ)由{bn}是首項(xiàng)b1=2的等比數(shù)列,b1b3=b4可求得其公比q=2,再結(jié)合數(shù)列{an}是首項(xiàng)為a1=1的等差數(shù)列,且b2S2=16,可求得等差數(shù)列的公差,繼而可求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)當(dāng)n=1時(shí),可求c1=a1=1,當(dāng)n≥2時(shí),由an+1-an可求得cn,從而可求數(shù)列{cn}的前n項(xiàng)和Tn
解答:解:(1)∵{bn}是首項(xiàng)b1=2,公比為q的等比數(shù)列,b1b3=b4,
∴2×2q2=2q3,而q≠0,
∴q=2,
∴bn=2n,
∴b2=4,
又?jǐn)?shù)列{an}是首項(xiàng)為a1=1的公差為d的等差數(shù)列,且b2S2=16,
∴S2=4,即1+1+d=4,d=2,
∴an=2n-1,
(2)∵c1+3c2+32c3+…+3n-1cn=an
∴c1+3c2+32c3+…+3n-1cn+3ncn+1=an+1
②-①得:3n•cn+1=2,
∴cn+1=2•3-n,
當(dāng)n=1時(shí),c1=a1=1
∴cn=,
∴T1=1,
當(dāng)n≥2時(shí),Tn=c1+c2+c3+…+cn
=1+2(3-1+3-2+…+31-n
=1+2•
=1+1-
=2-,
∵n=1時(shí),也適合
∴Tn=2-,n∈N*
點(diǎn)評(píng):本題考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式,考查數(shù)列的求和,考查分類(lèi)討論思想與化歸思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)為3,公差為2的等差數(shù)列,其前n項(xiàng)和為Sn,數(shù)列{bn}為等比數(shù)列,且b1=1,bn>0,數(shù)列{ban}是公比為64的等比數(shù)列.
(Ⅰ)求{an},{bn}的通項(xiàng)公式;
(Ⅱ)求證:
1
S1
+
1
S2
+…+
1
Sn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)a1=
1
4
的等比數(shù)列,其前n項(xiàng)和Sn中S3,S4,S2成等差數(shù)列,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log
1
2
|an|,若Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
,求證:
1
6
≤Tn
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)為1的等差數(shù)列,且公差不為零,而等比數(shù)列{bn}的前三項(xiàng)分別是a1,a2,a6
(I)求數(shù)列{an}的通項(xiàng)公式an;
(II)若b1+b2+…bk=85,求正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)為1,公差為2的等差數(shù)列,又?jǐn)?shù)列{bn}的前n項(xiàng)和Sn=nan
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)若cn=
1bn(2an+3)
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是首項(xiàng)a1=a,公差為2的等差數(shù)列,數(shù)列{bn}滿足2bn=(n+1)an
(1)若a1、a3、a4成等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(2)若對(duì)任意n∈N*都有bn≥b5成立,求實(shí)數(shù)a的取值范圍;
(3)數(shù)列{cn}滿足 cn+1-cn=(
12
)n(n∈N*)
,其中c1=1,f(n)=bn+cn,當(dāng)a=-20時(shí),求f(n)的最小值(n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案