【題目】已知函數(shù).
(1)證明:函數(shù)在上存在唯一的零點;
(2)若函數(shù)在區(qū)間上的最小值為1,求的值.
【答案】(1)證明見解析;(2)
【解析】
(1)求解出導(dǎo)函數(shù),分析導(dǎo)函數(shù)的單調(diào)性,再結(jié)合零點的存在性定理說明在上存在唯一的零點即可;
(2)根據(jù)導(dǎo)函數(shù)零點,判斷出的單調(diào)性,從而可確定,利用以及的單調(diào)性,可確定出之間的關(guān)系,從而的值可求.
(1)證明:∵,∴.
∵在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,
∴函數(shù)在上單調(diào)遞增.
又,令,,
則在上單調(diào)遞減,,故.
令,則
所以函數(shù)在上存在唯一的零點.
(2)解:由(1)可知存在唯一的,使得,即(*).
函數(shù)在上單調(diào)遞增.
∴當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.
∴.
由(*)式得.
∴,顯然是方程的解.
又∵是單調(diào)遞減函數(shù),方程有且僅有唯一的解,
把代入(*)式,得,∴,即所求實數(shù)的值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間和極值;
(2)若直線是曲線的切線,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.
(1)求證:平面;
(2)求平面與平面所成二面角的正弦值;
(3)若點在線段上,且直線與平面所成角的正弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y2=2px(p>0)上點M(3,m)到焦點F的距離為4.
(Ⅰ)求拋物線方程;
(Ⅱ)點P為準(zhǔn)線上任意一點,AB為拋物線上過焦點的任意一條弦,設(shè)直線PA,PB,PF的斜率為k1,k2,k3,問是否存在實數(shù)λ,使得k1+k2=λk3恒成立.若存在,請求出λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將曲線向左平移2個單位,再將得到的曲線上的每一個點的橫坐標(biāo)保持不變,縱坐標(biāo)縮短為原來的,得到曲線,以坐標(biāo)原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,的極坐標(biāo)方程為.
(1)求曲線的參數(shù)方程;
(2)直線的參數(shù)方程為(為參數(shù)),求曲線上到直線的距離最短的點的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸的極坐標(biāo)系中,點的極坐標(biāo)為,直線經(jīng)過點.曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)過點作直線的垂線交曲線于兩點(在軸上方),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點為極點,正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)若點是曲線上的動點,求到直線距離的最小值,并求出此時點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù),它的導(dǎo)函數(shù)為.
(1)當(dāng)時,求的零點;
(2)若函數(shù)存在極小值點,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com