在平面直角坐標系xOy中,已知點M(0,3),直線l:x+y-4=0,點N(x,y)是圓C:x2+y2-2x-1=0上的動點,MA⊥l,NB⊥l,垂足分別為A、B,則線段AB的最大值為
3
2
3
2
分析:由題意作出圖象,結合題意可知當直線為m時會使得要求的距離最大,然后把問題轉(zhuǎn)化為平行線AB與m間的距離公式即可求解.
解答:解:(如圖)由題意可得:圓C的方程為(x-1)2+y2=2
故圓C的圓心在(0,0)半徑為
2
,
直線MA⊥l,故直線MA的斜率為1,過點M(0,3)
故直線MA的方程為:y=x+3,
由圖象可知當動點N移動到直線為m是會使得AB最大,此時m與圓相切,
故可設m的方程為:y=x+b,故圓心到直線m的距離d=
|1+b|
2
=
2
,
解得d=-3,或d=-1(舍去)
故AB的距離為平行線MA與m的距離,由平行線間的距離公式可得AB=
|3-(-3)|
2
=3
2

故答案為:3
2
點評:本題為距離的最值得求解,涉及直線與圓的位置關系,點到直線的距離公式以及平行線間的距離,屬中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xoy中,已知圓心在直線y=x+4上,半徑為2
2
的圓C經(jīng)過坐標原點O,橢圓
x2
a2
+
y2
9
=1(a>0)
與圓C的一個交點到橢圓兩焦點的距離之和為10.
(1)求圓C的方程;
(2)若F為橢圓的右焦點,點P在圓C上,且滿足PF=4,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在平面直角坐標系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.若點A的橫坐標是
3
5
,點B的縱坐標是
12
13
,則sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,若焦點在x軸的橢圓
x2
m
+
y2
3
=1
的離心率為
1
2
,則m的值為
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•泰州三模)選修4-4:坐標系與參數(shù)方程
在平面直角坐標系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.設直線AC與BD的交點為P,求動點P的軌跡的參數(shù)方程(以t為參數(shù))及普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•東莞一模)在平面直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),且橢圓C的離心率e=
1
2

(1)求橢圓C的方程;
(2)設橢圓C的上下頂點分別為A1,A2,Q是橢圓C上異于A1,A2的任一點,直線QA1,QA2分別交x軸于點S,T,證明:|OS|•|OT|為定值,并求出該定值;
(3)在橢圓C上,是否存在點M(m,n),使得直線l:mx+ny=2與圓O:x2+y2=
16
7
相交于不同的兩點A、B,且△OAB的面積最大?若存在,求出點M的坐標及對應的△OAB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案