【題目】已知圓C:x2+(y-1)2=5,直線(xiàn)l:mx-y+1-m=0(m∈R).
(1)判斷直線(xiàn)l與圓C的位置關(guān)系;
(2)設(shè)直線(xiàn)l與圓C交于A,B兩點(diǎn),若直線(xiàn)l的傾斜角為120°,求弦AB的長(zhǎng).
【答案】(1)直線(xiàn)l與圓C必相交 (2).
【解析】
(1)判斷直線(xiàn)過(guò)定點(diǎn),利用點(diǎn)與圓的位置關(guān)系即可判斷直線(xiàn)與圓的位置關(guān)系;(2)根據(jù)直線(xiàn)的傾斜角為,求出直線(xiàn)斜率以及直線(xiàn)的方程,利用弦長(zhǎng)公式即可求弦的長(zhǎng).
(1)直線(xiàn)l可變形為y-1=m(x-1),因此直線(xiàn)l過(guò)定點(diǎn)D(1,1),
又=1<,所以點(diǎn)D在圓C內(nèi),則直線(xiàn)l與圓C必相交.
(2)由題意知m≠0,所以直線(xiàn)l的斜率k=m,又k=tan 120°=-,即m=-.
此時(shí),圓心C(0,1)到直線(xiàn)l: x+y--1=0的距離d==,
又圓C的半徑r=,所以|AB|=2=2=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面上,點(diǎn)A、C為射線(xiàn)PM上的兩點(diǎn),點(diǎn)B、D為射線(xiàn)PN上的兩點(diǎn),則有 (其中S△PAB、S△PCD分別為△PAB、△PCD的面積);空間中,點(diǎn)A、C為射線(xiàn)PM上的兩點(diǎn),點(diǎn)B、D為射線(xiàn)PN上的兩點(diǎn),點(diǎn)E、F為射線(xiàn)PL上的兩點(diǎn),則有 =(其中VP﹣ABE、VP﹣CDF分別為四面體P﹣ABE、P﹣CDF的體積).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l:
1證明直線(xiàn)l經(jīng)過(guò)定點(diǎn)并求此點(diǎn)的坐標(biāo);
2若直線(xiàn)l不經(jīng)過(guò)第四象限,求k的取值范圍;
3若直線(xiàn)l交x軸負(fù)半軸于點(diǎn)A,交y軸正半軸于點(diǎn)B,O為坐標(biāo)原點(diǎn),設(shè)的面積為S,求S的最小值及此時(shí)直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax+a(a∈R),其中e為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)y=f(x)的單調(diào)性;
(2)函數(shù)y=f(x)的圖象與x軸交于A(x1 , 0),B(x2 , 0)兩點(diǎn),x1<x2 , 點(diǎn)C在函數(shù)y=f(x)的圖象上,且△ABC為等腰直角三角形,記 ,求at﹣(a+t)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)過(guò)拋物線(xiàn)的焦點(diǎn)的直線(xiàn)交拋物線(xiàn)于點(diǎn),若以為直徑的圓過(guò)點(diǎn),且與軸交于, 兩點(diǎn),則( )
A. 3 B. 2 C. -3 D. -2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無(wú)廣,高二丈,問(wèn):積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹腻涹w,下底面寬3丈,長(zhǎng)4丈,上棱長(zhǎng)2丈,高2丈,問(wèn):它的體積是多少?”已知1丈為10尺,該鍥體的三視圖如圖所示,則該鍥體的體積為( )
A.10000立方尺
B.11000立方尺
C.12000立方尺
D.13000立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的定義域?yàn)镽.
(Ⅰ)求實(shí)數(shù)m的范圍;
(Ⅱ)若m的最大值為n,當(dāng)正數(shù)a,b滿(mǎn)足 時(shí),求4a+7b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=sin(2x+ )圖象上的點(diǎn)M(θ, )(0<θ< )向右平移t(t>0)個(gè)單位長(zhǎng)度得到點(diǎn)M′.若M′位于函數(shù)y=sin2x的圖象上,則( )
A.θ= ,t的最小值為
B.θ= ,t的最小值為
C.θ= ,t的最小值為
D.θ= ,t的最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過(guò)點(diǎn).
(1)求橢圓方程;
(2)設(shè)不過(guò)原點(diǎn)的直線(xiàn),與該橢圓交于兩點(diǎn),直線(xiàn)的斜率依次為,滿(mǎn)足,試問(wèn):當(dāng)變化時(shí),是否為定值?若是,求出此定值,并證明你的結(jié)論;若不是請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com