【題目】定義在R上的函數(shù)f(x)滿足f(4)=1,f′(x)為f(x)的導(dǎo)函數(shù),已知y=f′(x)的圖象如圖所示,若兩個(gè)正數(shù)a,b滿足f(2a+b)<1,則的取值范圍是____.
【答案】(,5)
【解析】
由導(dǎo)數(shù)圖象可知,當(dāng)時(shí), ,當(dāng)時(shí), 在上單調(diào)遞減,在上單調(diào)遞增, 都是正數(shù),且, ,作出平面區(qū)域如圖所示,令,則表示點(diǎn)與平面區(qū)域內(nèi)的點(diǎn)連線的斜率, ,故答案為.
【方法點(diǎn)晴】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫(huà)、二找、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過(guò)或最后通過(guò)的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,其左頂點(diǎn)在圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若點(diǎn)為橢圓上不同于點(diǎn)的點(diǎn),直線與圓的另一個(gè)交點(diǎn)為.是否存在點(diǎn),使得? 若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè), ,令, , .
(1)寫(xiě)出, , 的值,并猜想數(shù)列的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在斜三棱柱A1B1C1-ABC中,底面是等腰三角形,AB=AC,側(cè)面BB1C1C⊥底面ABC.
(1)若D是BC的中點(diǎn),求證:AD⊥CC1;
(2)過(guò)側(cè)面BB1C1C的對(duì)角線BC1的平面交側(cè)棱于M,若AM=MA1,求證:截面MBC1⊥側(cè)面BB1C1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)吃粽子是我國(guó)的傳統(tǒng)習(xí)俗,設(shè)一盤(pán)中裝有個(gè)粽子,其中豆沙粽個(gè),肉粽個(gè),白粽個(gè),這三種粽子的外觀完全相同,從中任意選取個(gè).
()求三種粽子各取到個(gè)的概率.
()設(shè)表示取到的豆沙粽個(gè)數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左,右焦點(diǎn)分別為F1, F2,直線l1過(guò)點(diǎn)F1且垂直于橢圓的長(zhǎng)軸,動(dòng)直線l2垂直l1于點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M.
(1)求點(diǎn)M的軌跡的方程;
(2)設(shè)與x軸交于點(diǎn)Q, 上不同于點(diǎn)Q的兩點(diǎn)R、S,且滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(1)當(dāng)時(shí),畫(huà)出函數(shù)的大致圖像;
(2)當(dāng)時(shí),根據(jù)圖像寫(xiě)出函數(shù)的單調(diào)減區(qū)間,并用定義證明你的結(jié)論;
(3)試討論關(guān)于x的方程解的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)是R上的偶函數(shù),且在區(qū)間(﹣∞,0)是單調(diào)遞增的,若S1= x2dx,S2= dx,S3= exdx,則f(S1),f(S2),f(S3)的大小關(guān)系是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com