若復(fù)數(shù)z=
1+i
i
,其中i為虛數(shù)單位,則z的虛部為( 。
A、-1B、1C、iD、-i
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:直接由復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡(jiǎn),則復(fù)數(shù)z的虛部可求.
解答: 解:∵z=
1+i
i
=
(1+i)(-i)
-i2
=1-i
,
∴z的虛部為-1.
故選:A.
點(diǎn)評(píng):本題考查復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,EP交圓于E,C兩點(diǎn),PD切圓于D,G為CE上一點(diǎn)且PG=PD,連接DG并延長(zhǎng)交圓于點(diǎn)A,作弦AB垂直EP,垂足為F.
(Ⅰ)求證:AB為圓的直徑;
(Ⅱ)若AC=BD,求證:AB=ED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
9
+
y2
4
=1,點(diǎn)M與C的焦點(diǎn)不重合,若M關(guān)于C的焦點(diǎn)的對(duì)稱點(diǎn)分別為A、B,線段MN的中點(diǎn)在C上,則|AN|+|BN|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)y=f(x)與y=g(x)在交點(diǎn)處有共同切線的是(  )
①f(x)=x2-1,g(x)=lnx
②f(x)=3x2+1,g(x)=x3+3x
③f(x)=(x+1)2,g(x)=ex
④f(x)=
x
,g(x)=
e
2
lnx.
A、①②B、②④C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

學(xué)生的語文、數(shù)學(xué)成績(jī)均被評(píng)定為三個(gè)等級(jí),依次為“優(yōu)秀”“合格”“不合格”.若學(xué)生甲的語文、數(shù)學(xué)成績(jī)都不低于學(xué)生乙,且其中至少有一門成績(jī)高于乙,則稱“學(xué)生甲比學(xué)生乙成績(jī)好”.如果一組學(xué)生中沒有哪位學(xué)生比另一位學(xué)生成績(jī)好,并且不存在語文成績(jī)相同、數(shù)學(xué)成績(jī)也相同的兩位學(xué)生,則這一組學(xué)生最多有( 。
A、2人B、3人C、4人D、5人

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:x2+2y2=4.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)設(shè)O為原點(diǎn),若點(diǎn)A在直線y=2上,點(diǎn)B在橢圓C上,且OA⊥OB,求線段AB長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=
2

(Ⅰ)證明:AC⊥平面BCDE;
(Ⅱ)求直線AE與平面ABC所成的角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,已知點(diǎn)A(1,1),B(2,3),C(3,2),點(diǎn)P(x,y)在△ABC三邊圍成的區(qū)域(含邊界)上,且
OP
=m
AB
+n
AC 
(m,n∈R)
(Ⅰ)若m=n=
2
3
,求|
OP
|;
(Ⅱ)用x,y表示m-n,并求m-n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)(
1+i
1-i
2=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案