【題目】如圖,設(shè)P是圓上的動點,點D是P在x軸上的投影,M為線段PD上一點,且,

(1)當(dāng)P在圓上運動時,求點M的軌跡C的方程;

(2)求過點(3,0)且斜率為的直線被軌跡C所截線段的長度.

【答案】;(。

【解析】試題分析:()由題意P是圓上的動點,點DPx軸上的射影,MPD上一點,且,利用相關(guān)點法即可求軌跡;()由題意寫出直線方程與曲線C的方程進(jìn)行聯(lián)立,利用根與系數(shù)的關(guān)系得到線段長度

試題解析:()設(shè)M的坐標(biāo)為(x,yP的坐標(biāo)為(xp,yp

由已知 xp=x,

P在圓上, ,即C的方程為

)過點(30)且斜率為的直線方程為,

設(shè)直線與C的交點為

將直線方程代入C的方程,得

線段AB的長度為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 平面, , , 的中點.

(Ⅰ)證明: 平面;

(Ⅱ)求多面體的體積;

(Ⅲ)求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】漳州市博物館為了保護(hù)一件珍貴文物,需要在館內(nèi)一種透明又密封的長方體玻璃保護(hù)罩內(nèi)充入保護(hù)液體.該博物館需要支付的總費用由兩部分組成:①罩內(nèi)該種液體的體積比保護(hù)罩的容積少0.5立方米,且每立方米液體費用500元;②需支付一定的保險費用,且支付的保險費用與保護(hù)罩容積成反比,當(dāng)容積為2立方米時,支付的保險費用為4000元.

(Ⅰ)求該博物館支付總費用與保護(hù)罩容積之間的函數(shù)關(guān)系式;

(Ⅱ)求該博物館支付總費用的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且滿足

(1)求證:數(shù)列為等比數(shù)列;

(2)若,求的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若,判斷函數(shù)的單調(diào)性;

(2)若函數(shù)在定義域內(nèi)單調(diào)遞減,求實數(shù)的取值范圍;

(3)當(dāng)時,關(guān)于的方程上恰有兩個不相等的實數(shù)根,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 經(jīng)過橢圓 的左右焦點,且與橢圓在第一象限的交點為,且三點共線,直線交橢圓 兩點,且).

(1)求橢圓的方程;

(2)當(dāng)三角形的面積取得最大值時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是否存在常數(shù),使等式對于一切都成立?若不存在,說明理由;若存在請用數(shù)學(xué)歸納法證明?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

(1)求的解析式及單調(diào)遞減區(qū)間;

(2)若存在使函數(shù)成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象如圖所示.

(Ⅰ)求的值;

(Ⅱ)若函數(shù)處的切線方程為,求函數(shù)的解析式;

(Ⅲ)在(Ⅱ)的條件下,函數(shù)的圖象有三個不同的交點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案