【題目】設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn , 滿足4Sn=an+12﹣4n﹣1,n∈N* , 且a2 , a5 , a14構(gòu)成等比數(shù)列.
(1)證明:a2= ;
(2)求數(shù)列{an}的通項公式;
(3)證明:對一切正整數(shù)n,有

【答案】
(1)解:當(dāng)n=1時, ,


(2)解:當(dāng)n≥2時,滿足 ,且 ,

,

,

∵an>0,∴an+1=an+2,

∴當(dāng)n≥2時,{an}是公差d=2的等差數(shù)列.

∵a2,a5,a14構(gòu)成等比數(shù)列,∴ , ,解得a2=3,

由(1)可知, ,∴a1=1∵a2﹣a1=3﹣1=2,

∴{an}是首項a1=1,公差d=2的等差數(shù)列.

∴數(shù)列{an}的通項公式an=2n﹣1


(3)解:由(2)可得式 =


【解析】(1)對于 ,令n=1即可證明;(2)利用 ,且 ,(n≥2),兩式相減即可求出通項公式.(3)由(2)可得 = .利用“裂項求和”即可證明.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)當(dāng)曲線在點處的切線的斜率大于時,求函數(shù)的單調(diào)區(qū)間;

(2)若 恒成立,求的取值范圍.(提示:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且時, ,則函數(shù)為自然對數(shù)的底數(shù))的零點個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司即將推車一款新型智能手機(jī),為了更好地對產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購買該款手機(jī)與年齡有關(guān)?

購買意愿強(qiáng)

購買意愿弱

合計

20~40歲

大于40歲

合計

(2)從購買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,記抽到的2人中年齡大于40歲的市民人數(shù)為,求的分布列和數(shù)學(xué)期望.

附: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+2x+c的對稱軸為x=1,g(x)=x+ (x>0).
(1)求函數(shù)g(x)的最小值及取得最小值時x的值;
(2)試確定c的取值范圍,使g(x)﹣f(x)=0至少有一個實根;
(3)若F(x)=﹣f(x)+4x+c,存在實數(shù)t,對任意x∈[1,m],使F(x+t)≤3x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖: 是平行四邊行, 平面, // , , , 。

(1)求證: //平面

(2)求證:平面平面;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】值域為(0,+∞)的函數(shù)是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)過原點的直線與橢圓交于兩點,點為橢圓上不同于的一點,直線的斜率均存在,且直線的斜率之積為.

(1)求橢圓的離心率;

(2)設(shè)分別為橢圓的左、右焦點,斜率為的直線經(jīng)過橢圓的右焦點,且與橢圓交于兩點.若點在以為直徑的圓內(nèi)部,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某天數(shù)學(xué)課上,你突然驚醒,發(fā)現(xiàn)黑板上有如下內(nèi)容:
例:求x3﹣3x,x∈[0,+∞)的最小值.解:利用基本不等式a+b+c≥3 ,得到x3+1+1≥3x,于是x3﹣3x=x3+1+1﹣3x﹣2≥3x﹣3x﹣2=﹣2,當(dāng)且僅當(dāng)x=1時,取到最小值﹣2
(1)老師請你模仿例題,研究x4﹣4x,x∈[0,+∞)上的最小值;
(提示:a+b+c+d≥4
(2)研究 x3﹣3x,x∈[0,+∞)上的最小值;
(3)求出當(dāng)a>0時,x3﹣ax,x∈[0,+∞)的最小值.

查看答案和解析>>

同步練習(xí)冊答案