設(shè)函數(shù)∈R),給出如下四個(gè)命題:①若c=0,則為奇函數(shù);②若b=0,c>0,則方程只有一個(gè)根;③函數(shù)的圖像關(guān)于點(diǎn)(0,c)成中心對(duì)稱圖形;④關(guān)于的方程最多有兩個(gè)實(shí)根.其中正確的命題是

A.①③                  B.①④                    C.①②③                D.①②④

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n為正整數(shù))都在函數(shù)y=(
1
2
)x
的圖象上,且數(shù)列{an} 是a1=1,公差為d的等差數(shù)列.
(1)證明:數(shù)列{bn} 是等比數(shù)列;
(2)若公差d=1,以點(diǎn)Pn的橫、縱坐標(biāo)為邊長(zhǎng)的矩形面積為cn,求最大的實(shí)數(shù)t,使cn
1
t
(t∈R,t≠0)對(duì)一切正整數(shù)n恒成立;
(3)對(duì)(2)中的數(shù)列{an},對(duì)每個(gè)正整數(shù)k,在ak與ak+1之間插入3k-1個(gè)3(如在a1與a2之間插入30個(gè)3,a2與a3之間插入31個(gè)3,a3與a4之間插入32個(gè)3,…,依此類推),得到一個(gè)新的數(shù)列{dn},設(shè)Sn是數(shù)列{dn}的前n項(xiàng)和,試探究2008是否為數(shù)列{Sn}中的某一項(xiàng),寫出你探究得到的結(jié)論并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列個(gè)命題:
①若函數(shù)f(x)=asin(2x+
π
3
+?)(x∈
R)為偶函數(shù),則?=kπ+
π
6
(k∈Z)

②已知ω>0,函數(shù)f(x)=sin(ωx+
π
4
)在(
π
2
,π)上單調(diào)遞減,則ω的取值范圍是[
1
2
,
5
4
]

③函數(shù)f(x)=Asin(ωx+φ)(其中A>0,|φ|<
π
2
)的圖象如圖所示,則f(x)的解析式為f(x)=sin(2x+
π
3
)

④設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊為a,b,c,若(a+b)c<2ab;則C>
π
2

⑤設(shè)ω>0,函數(shù)y=sin(ωx+
π
3
)+2
的圖象向右平移
3
個(gè)單位后與原圖象重合,則ω的最小值是
3
2

其中正確的命題為
①②③⑤
①②③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知[x]表示不超過x的最大整數(shù)(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定義{x}=x-[x].給出如下命題:
①使[x-1]=3成立的x的取值范圍是4≤x<5;
②函數(shù)y={x}的定義域?yàn)镽,值域?yàn)閇0,1];
{
2012
2013
}+{
20122
2013
}+{
20123
2013
}+…+{
20122012
2013
}
=1006;
④設(shè)函數(shù)f(x)=
{x}x≥0
f(x+1)x<0
,則函數(shù)y=f(x)-
1
4
x-
1
4
的不同零點(diǎn)有3個(gè).
其中正確的命題的序號(hào)是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)判斷:
①定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí)f(x)=x2+2,則函數(shù)f(x)的值域?yàn)閧y|y≥2或y≤-2};
②若不等式x3+x2+a<0對(duì)一切x∈[0,2]恒成立,則實(shí)數(shù)a的取值范圍是{a|a<-12};
③當(dāng)f(x)=log3x時(shí),對(duì)于函數(shù)f(x)定義域中任意的x1,x2(x1≠x2)都有f(
x1+x2
2
)<
f(x1)+f(x2)
2
;
④設(shè)g(x)表示不超過t>0的最大整數(shù),如:[2]=2,[1.25]=1,對(duì)于給定的n∈N+,定義
C
x
n
=
n(n-1)…(n-[x]+1)
x(x-1)…(x-[x]+1)
,x∈[1,+∞),則當(dāng)x∈[
3
2
,2)時(shí)函數(shù)
C
x
8
的值域是(4,
16
3
]

上述判斷中正確的結(jié)論的序號(hào)是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:設(shè)函數(shù)y=f(x)在(a,b)內(nèi)可導(dǎo),f'(x)為f(x)的導(dǎo)數(shù),f''(x)為f'(x)的導(dǎo)數(shù)即f(x)的二階導(dǎo)數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導(dǎo)數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時(shí)亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標(biāo)系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對(duì)?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關(guān)系;
(3)當(dāng)n為正整數(shù)時(shí),定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

同步練習(xí)冊(cè)答案