【題目】兩條平行直線和圓的位置關(guān)系定義為:若兩條平行直線和圓有四個不同的公共點,則稱兩條平行線和圓“相交”;若兩平行直線和圓沒有公共點,則稱兩條平行線和圓“相離”;若兩平行直線和圓有一個、兩個或三個不同的公共點,則稱兩條平行線和圓“相切”.已知直線,,和圓:相切,則實數(shù)的取值范圍是( )
A. 或B. 或
C. 或D. 或
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),曲線在原點處的切線為.
(1)證明:曲線與軸正半軸有交點;
(2)設曲線與軸正半軸的交點為,曲線在點處的切線為直線,求證:曲線上的點都不在直線的上方;
(3)若關(guān)于的方程(為正實數(shù))有不等實根,求證:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,點也為拋物線的焦點.(1)若為橢圓上兩點,且線段的中點為,求直線的斜率;
(2)若過橢圓的右焦點作兩條互相垂直的直線分別交橢圓于和,設線段的長分別為,證明是定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】盒中有6只燈泡,其中2只次品,4只正品,有放回地從中任取兩次,每次取一只,試求下列事件的概率:
(1)取到的2只都是次品;
(2)取到的2只中正品、次品各一只;
(3)取到的2只中至少有一只正品.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為,(為參數(shù)),圓的標準方程為.以坐標原點為極點, 軸正半軸為極軸建立極坐標系.
(1)求直線和圓的極坐標方程;
(2)若射線與的交點為,與圓的交點為,且點恰好為線段的中點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知x>0,由不等式x+ ≥2 =2,x+ = ≥3 =3,…,可以推出結(jié)論:x+ ≥n+1(n∈N*),則a=( )
A.2n
B.3n
C.n2
D.nn
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com