(2010•寶山區(qū)模擬)函數(shù)f(x)=2|x|是( 。
分析:根據(jù)冪函數(shù)的圖象與性質,我們逐一分析四個答案中的四個函數(shù)的性質,然后和題目中的條件進行比照,即可得到答案.
解答:解:∵x∈R,且函數(shù)f(-x)=2|-x|=f(x)=2|x|,
∴函數(shù)是一個偶函數(shù)
這樣去掉A,C
下面只要判斷函數(shù)分析函數(shù)的單調性,
∵f(2)=4>f(1)=2,
∴函數(shù)在區(qū)間(0,+∞)遞減是錯誤的,
故選B
點評:本題考查的知識點是函數(shù)奇偶性與單調性的綜合應用,其中熟練掌握基本初等函數(shù)的性質是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•寶山區(qū)模擬)函數(shù)f(x)=-x2+3x-1,x∈[3,5]的最小值為
-11
-11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•寶山區(qū)模擬)設m.n∈R,給出下列命題:
(1)m<n<0⇒m2<n2(2)ma2<na2⇒m<n(3)
m
n
<a,⇒ma<na
,(4)m<n<0,⇒
n
m
<1

其中正確的命題有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•寶山區(qū)模擬)設F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,設橢圓C上的點A(1,
3
2
)到F1、F2兩點距離之和等于4.
(1)寫出橢圓C的方程;
(2)設點K是橢圓上的動點,求 線段F1K的中點的軌跡方程;
(3)求定點P(m,0)(m>0)到橢圓C上點的距離的最小值d(m),并求當最小值為1時m值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•寶山區(qū)模擬)如果直線x+y+a=0與圓x2+(y+
2
)2=1
有公共點,則實數(shù)a的取值范圍是
[0,2
2
]
[0,2
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•寶山區(qū)模擬)已知數(shù)列{an}滿足a1=1,a2=-2,an+2=-
1an
(n∈N*)
,則該數(shù)列前26項的和為
-10
-10

查看答案和解析>>

同步練習冊答案