精英家教網 > 高中數學 > 題目詳情
某企業(yè)投入100萬元購入一套設備.該設備每年的運轉費用是0.5萬元,此外每年都要花費一定的維護費,第一年的維護費為2萬元,由于設備老化,以后每年的維護費都比上一年增加2萬元.為使該設備年平均費用最低,該企業(yè)( )年后需要更新設備.
A.10
B.11
C.13
D.21
【答案】分析:由題意可知:每年的維護費構成一個以2為首項,2為公差的等差數列,進而可得年平均費用為:y=n++1.5,然后由基本不等式可求出年平均費用的最低值和對應的年數.
解答:解:由題意可知:每年的維護費構成一個以2為首項,2為公差的等差數列,
故第n年的維護費為:an=2+2(n-1)=2n,總的維護費為:=n(n+1)
故年平均費用為:y=,即y=n++1.5,(n為正整數);
由基本不等式得:y=n++1.5≥2+1.5=21.5(萬元)
當且僅當n=,即n=10時取到等號,即該企業(yè)10年后需要更新設備.
故選A
點評:本題考查基本不等式的應用.設計等差數列的通項公式和求和公式,屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

某市為鼓勵企業(yè)發(fā)展“低碳經濟”,真正實現(xiàn)“低消耗、高產出”,施行獎懲制度.通過制定評分標準,每年對本市50%的企業(yè)抽查評估,評出優(yōu)秀、良好、合格和不合格四個等次,并根據等級給予相應的獎懲(如下表).某企業(yè)投入100萬元改造,由于自身技術原因,能達到以上四個等次的概率分別為
1
2
,
1
3
1
8
,
1
24
,且由此增加的產值分別為60萬元、40萬元、20萬元、-5萬元.設該企業(yè)當年因改造而增加利潤為ξ.
(Ⅰ)在抽查評估中,該企業(yè)能被抽到且被評為合格及其以上等次的概率是多少?
(Ⅱ)求ξ的數學期望.
評價得分 (0,60) [60,70) [70,80) [80,100]
評價等級 不合格 合格 良好 優(yōu)秀
獎懲
(萬元)
-80 30 60 100

查看答案和解析>>

科目:高中數學 來源: 題型:

某企業(yè)投入100萬元購入一套設備.該設備每年的運轉費用是0.5萬元,此外每年都要花費一定的維護費,第一年的維護費為2萬元,由于設備老化,以后每年的維護費都比上一年增加2萬元.為使該設備年平均費用最低,該企業(yè)( 。┠旰笮枰略O備.

查看答案和解析>>

科目:高中數學 來源: 題型:單選題

某企業(yè)投入100萬元購入一套設備.該設備每年的運轉費用是0.5萬元,此外每年都要花費一定的維護費,第一年的維護費為2萬元,由于設備老化,以后每年的維護費都比上一年增加2萬元.為使該設備年平均費用最低,該企業(yè)_____年后需要更新設備.


  1. A.
    10
  2. B.
    11
  3. C.
    13
  4. D.
    21

查看答案和解析>>

科目:高中數學 來源:2010年廣東省佛山市高三4月質量檢測數學試卷2(理科)(解析版) 題型:解答題

某市為鼓勵企業(yè)發(fā)展“低碳經濟”,真正實現(xiàn)“低消耗、高產出”,施行獎懲制度.通過制定評分標準,每年對本市50%的企業(yè)抽查評估,評出優(yōu)秀、良好、合格和不合格四個等次,并根據等級給予相應的獎懲(如下表).某企業(yè)投入100萬元改造,由于自身技術原因,能達到以上四個等次的概率分別為,且由此增加的產值分別為60萬元、40萬元、20萬元、-5萬元.設該企業(yè)當年因改造而增加利潤為ξ.
(Ⅰ)在抽查評估中,該企業(yè)能被抽到且被評為合格及其以上等次的概率是多少?
(Ⅱ)求ξ的數學期望.
評價得分(0,60)【60,70)【70,80)【80,100】
評價等級不合格合格良好優(yōu)秀
獎懲
(萬元)
-803060100

查看答案和解析>>

同步練習冊答案