【題目】以下命題中,正確命題的序號(hào)是 . ①函數(shù)y=tanx在定義域內(nèi)是增函數(shù);
②函數(shù)y=2sin(2x+ )的圖象關(guān)于x= 成軸對(duì)稱(chēng);
③已知 =(3,4), =﹣2,則向量 在向量 的方向上的投影是﹣
④如果函數(shù)f(x)=ax2﹣2x﹣3在區(qū)間(﹣∞,4)上是單調(diào)遞減的,則實(shí)數(shù)a的取值范圍是(0, ].

【答案】②③
【解析】解:函數(shù)y=tanx在定義域內(nèi)不是單調(diào)函數(shù),故①錯(cuò)誤; 當(dāng)x= 時(shí),2x+ = ,故函數(shù)y=2sin(2x+ )的圖象關(guān)于x= 成軸對(duì)稱(chēng),故②正確;
=(3,4), =﹣2,則向量 在向量 的方向上的投影是 =﹣ ,故③正確;
如果函數(shù)f(x)=ax2﹣2x﹣3在區(qū)間(﹣∞,4)上是單調(diào)遞減的,則f′(x)=2ax﹣2≤0在區(qū)間(﹣∞,4)上恒成立,
解得:a∈[0, ].故④錯(cuò)誤;
所以答案是:②③
【考點(diǎn)精析】關(guān)于本題考查的命題的真假判斷與應(yīng)用,需要了解兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒(méi)有關(guān)系才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)求f(x)+f(1﹣x)的值;
(2)若數(shù)列{an}滿(mǎn)足an=f(0)+f( )+f( )+…+f( )+f(1)(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(3)若數(shù)列{bn}滿(mǎn)足bn=2nan , Sn是數(shù)列{bn}的前n項(xiàng)和,是否存在正實(shí)數(shù)k,使不等式knSn>3bn對(duì)于一切的n∈N*恒成立?若存在,請(qǐng)求出k的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a2=﹣5,S5=﹣20.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求使不等式Sn>an成立的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿(mǎn)足an+Sn=2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證數(shù)列{an}中不存在三項(xiàng)按原來(lái)順序成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一批材料可以建成80m的圍墻,若用此材料在一邊靠墻的地方圍成一塊矩形場(chǎng)地,中間用同樣的材料隔成三個(gè)面積相等的小矩形(如圖所示),且圍墻厚度不計(jì),則圍成的矩形的最大面積為(
A.200m2
B.360m2
C.400m2
D.480m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,離心率為,設(shè)直線(xiàn)的斜率是,且與橢圓交于 兩點(diǎn).

Ⅰ)求橢圓的標(biāo)準(zhǔn)方程.

Ⅱ)若直線(xiàn)軸上的截距是,求實(shí)數(shù)的取值范圍.

Ⅲ)以為底作等腰三角形,頂點(diǎn)為,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ< )的圖象與y軸的交點(diǎn)為(0, ),它的一個(gè)對(duì)稱(chēng)中心是M( ,0),點(diǎn)M與最近的一條對(duì)稱(chēng)軸的距離是
(1)求此函數(shù)的解析式;
(2)求此函數(shù)取得最大值時(shí)x的取值集合;
(3)當(dāng)x∈(0,π)時(shí),求此函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某園林公司準(zhǔn)備綠化一塊半徑為200米,圓心角為 的扇形空地(如圖的扇形OPQ區(qū)域),扇形的內(nèi)接矩形ABCD為一水池,其余的地方種花,若∠COP=α,矩形ABCD的面積為S(單位:平方米).
(1)試將S表示為關(guān)于α的函數(shù),求出該函數(shù)的表達(dá)式;
(2)角α取何值時(shí),水池的面積 S最大,并求出這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù)),.

(Ⅰ)當(dāng)時(shí),求的最小值;

(Ⅱ)記,請(qǐng)證明下列結(jié)論:

①若,則對(duì)任意,有;

②若,則存在實(shí)數(shù),使.

查看答案和解析>>

同步練習(xí)冊(cè)答案