【題目】設數(shù)列的前項和為,且.令.
(1)求的通項公式;
(2)若,且數(shù)列的前項和為,求.
【答案】(1)(2)
【解析】試題分析:(1)由可得,兩式相減可得,利用“累乘法”即可得的通項公式,進而可求的通項公式;(2)利用(1)可得數(shù)列的通項公式, ,根據(jù)錯位相減法可得結(jié)果.
試題解析:(1)當時, 得
∴.
∵,∴(),.
(2),
所以
作差得,
∴.
【 方法點睛】本題主要考查由遞推公式求數(shù)列的通項以及錯位相減法求數(shù)列的的前 項和,屬于中檔題.一般地,如果數(shù)列是等差數(shù)列, 是等比數(shù)列,求數(shù)列的前項和時,可采用“錯位相減法”求和,一般是和式兩邊同乘以等比數(shù)列的公比,然后作差求解, 在寫出“”與“” 的表達式時應特別注意將兩式“錯項對齊”以便下一步準確寫出“”的表達式.
科目:高中數(shù)學 來源: 題型:
【題目】己知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),a>0,且a≠1.
(1)若1是關于x的方程f(x)﹣g(x)=0的一個解,求t的值;
(2)當0<a<1且t=﹣1時,解不等式f(x)≤g(x);
(3)若函數(shù)F(x)=af(x)+tx2﹣2t+1在區(qū)間(﹣1,2]上有零點,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】兩圓x2+y2+2ax+a2﹣4=0和x2+y2﹣4by﹣1+4b2=0恰有三條公切線,若a∈R,b∈R,且ab≠0,則 的最小值為( )
A.
B.
C.1
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(﹣4,4)、B(4,4),直線AM與BM相交于點M,且直線AM的斜率與直線BM的斜率之差為﹣2,點M的軌跡為曲線C.
(1)求曲線C 的軌跡方程;
(2)Q為直線y=﹣1上的動點,過Q做曲線C的切線,切點分別為D、E,求△QDE的面積S的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在長方體ABCD﹣A1B1C1D1中,E、M、N分別是BC、AE、D1C的中點,AD=AA1 , AB=2AD
(Ⅰ)證明:MN∥平面ADD1A1
(Ⅱ)求直線AD與平面DMN所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=2x﹣1.
(1)求f(3)+f(﹣1);
(2)求f(x)的解析式;
(3)若x∈A,f(x)∈[﹣7,3],求區(qū)間A.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知, 分別是中點,弧的半徑分別為,點平分弧,過點作弧的切線分別交于點.四邊形為矩形,其中點在線段上,點在弧上,延長與交于點.設,矩形的面積為.
(1)求的解析式并求其定義域;
(2)求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)滿足:
①對任意實數(shù)m,n都有f(m+n)+f(m﹣n)=2f(m)f(n);
②對任意m∈R,都有f(1+m)=f(1﹣m)恒成立;
③f(x)不恒為0,且當0<x<1時,f(x)<1.
(1)求f(0),f(1)的值;
(2)判斷函數(shù)f(x)的奇偶性,并給出你的證明;
(3)定義:“若存在非零常數(shù)T,使得對函數(shù)g(x)定義域中的任意一個x,均有g(x+T)=g(x),則稱g(x)為以T為周期的周期函數(shù)”.試證明:函數(shù)f(x)為周期函數(shù),并求出 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com