正四面體ABCD中,AO⊥平面BCD,垂足為,設(shè)是線段上一點(diǎn),且是直角,則的值為                  .
1.

試題分析:延長(zhǎng)BO,交CD于點(diǎn)N,可得BN⊥CD且N為CD中點(diǎn)

設(shè)正四面體ABCD棱長(zhǎng)為1,得等邊△ABC中,BN=,BC=
∵AO⊥平面BCD,∴O為等邊△ABC的中心,得BO=,BN=,
Rt△ABO中,AO==
設(shè)MO=x,則Rt△BOM中,BM==
∵∠BMC=90°,得△BMC是等腰直角三角形,
∴BM=AM=BC,即=,解之得x=
由此可得AM=AO-MO=,所以MO=AM=,從而=1.
點(diǎn)評(píng):中檔題,本題充分借助于正四面體的幾何性質(zhì),通過發(fā)現(xiàn)等腰三角形,靈活利用勾股定理,達(dá)到解題目的。本題解法充分體現(xiàn)了立體幾何問題轉(zhuǎn)化成平面幾何問題的基本思路。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(文科)長(zhǎng)方體中,,,是底面對(duì)角線的交點(diǎn).

(Ⅰ) 求證:平面
(Ⅱ) 求證:平面;
(Ⅲ) 求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,右邊幾何體的正視圖和側(cè)視圖可能正確的是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)
如圖,已知平面與直線均垂直于所在平面,且,

(Ⅰ)求證:平面; 
(Ⅱ)若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下面關(guān)于四棱柱的四個(gè)命題:
① 若有兩個(gè)側(cè)面垂直于底面,則該四棱柱為直四棱柱;
② 若有兩個(gè)過相對(duì)側(cè)棱的截面都垂直于底面,則該四棱柱為直四棱柱;
③ 若四個(gè)側(cè)面面面全等,則該四棱柱為直四棱柱;
④ 若四棱柱的四條對(duì)角線兩兩相等,則該四棱柱為直四棱柱。
其中真命題的編號(hào)是           (寫出所有真命題的編號(hào))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下圖是一個(gè)幾何體的三視圖,那么這個(gè)幾何體的體積等于          。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,單位正方體ABCD-A1B1C1D1中,點(diǎn)P在平面A1BC1上,則三棱錐P-ACD1的體積為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列幾何體各自的三視圖中,有且僅有兩個(gè)視圖相同的是(   )

①正方體       ②圓錐          ③正三棱臺(tái)     ④正四棱錐
A.①②B.①③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分) 如圖,四邊形中,為正三角形,,交于點(diǎn).將沿邊折起,使點(diǎn)至點(diǎn),已知與平面所成的角為,且點(diǎn)在平面內(nèi)的射影落在內(nèi).

(Ⅰ)求證:平面;
(Ⅱ)若已知二面角的余弦值為,求的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案