已知為上的可導(dǎo)函數(shù),且,均有,則有( )
A., |
B., |
C., |
D., |
D
解析試題分析:根據(jù)題目給出的條件:“f(x)為R上的可導(dǎo)函數(shù),且對?x∈R,均有f(x)>f'(x)”,結(jié)合給出的四個(gè)選項(xiàng),設(shè)想尋找一個(gè)輔助函數(shù)g(x)=,這樣有以e為底數(shù)的冪出現(xiàn),求出函數(shù)g(x)的導(dǎo)函數(shù),由已知得該導(dǎo)函數(shù)大于0,得出函數(shù)g(x)為減函數(shù),利用函數(shù)的單調(diào)性即可得到結(jié)論.解:令g(x)=,故,因?yàn)閒(x)>f'(x),所以g′(x)<0,所以函數(shù)g(x)為R上的減函數(shù),所以g(-2013)>g(0),所以e2013f(-2013)>f(0),f(2013)<e2013f(0).故選D.
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
點(diǎn)評(píng):本題考查了導(dǎo)數(shù)的運(yùn)算,由題目給出的條件結(jié)合選項(xiàng)去分析函數(shù)解析式,屬逆向思維,屬中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com