【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.

)求數(shù)列的通項公式;

)令.求數(shù)列的前n項和.

【答案】(;

【解析】試題分析:(1)先由公式求出數(shù)列的通項公式;進而列方程組求數(shù)列的首項與公差,得數(shù)列的通項公式;(2)由(1)可得,再利用錯位相減法求數(shù)列的前項和.

試題解析:(1)由題意知當時, ,

時, ,所以

設(shè)數(shù)列的公差為,

,即,可解得,

所以

2)由(1)知,又,得,兩式作差,得所以

考點 1、待定系數(shù)法求等差數(shù)列的通項公式;2、利用錯位相減法求數(shù)列的前項和.

【易錯點晴】本題主要考查待定系數(shù)法求等差數(shù)列的通項公式、利用錯位相減法求數(shù)列的前項和,屬于難題. “錯位相減法求數(shù)列的前項和是重點也是難點,利用錯位相減法求數(shù)列的和應(yīng)注意以下幾點:掌握運用錯位相減法求數(shù)列的和的條件(一個等差數(shù)列與一個等比數(shù)列的積);相減時注意最后一項 的符號;求和時注意項數(shù)別出錯;最后結(jié)果一定不能忘記等式兩邊同時除以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓方程為,雙曲線的兩條漸近線分別為, ,過橢圓的右焦點作直線,使,又交于點,設(shè)直線與橢圓的兩個交點由上至下依次為, . 

(1)若所成的銳角為,且雙曲線的焦距為4,求橢圓的方程;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點.

(1)求線段的長度;

(2) 為坐標原點, 為拋物線上一點,若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,離心率為,動點

(Ⅰ)求橢圓的標準方程;

(Ⅱ)求以為直徑且被直線截得的弦長為2的圓的方程;

(Ⅲ)設(shè)是橢圓的右焦點,過點的垂線與以為直徑的圓交于點,證明:線段的長為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,丨φ丨< )的部分圖象如圖所示,則f(x)的解析式為(
A.f(x)=2sin(x+
B.f(x)=2sin(2x+
C.f(x)=2sin(2x﹣
D.f(x)=2sin(4x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為直角梯形, ,平面平面, 分別為的中點, 的中點,過作平面分別與交于點.

(Ⅰ)當中點時,求證:平面平面;

(Ⅱ)當時,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 ,且圓心在直線上.

Ⅰ)求此圓的方程

Ⅱ)求與直線垂直且與圓相切的直線方程

若點為圓上任意點,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線, .

(1)當時,直線的交點,且它在兩坐標軸上的截距相反,求直線的方程;

(2)若坐標原點到直線的距離為,判斷的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若曲線在點處的切線經(jīng)過點,求的值;

(2)若內(nèi)存在極值,求的取值范圍;

(3)當時, 恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案