【題目】在△ABC中,∠BAC=10°,∠ACB=30°,將直線BC繞AC旋轉(zhuǎn)得到B1C,直線AC繞AB旋轉(zhuǎn)得到AC1 , 則在所有旋轉(zhuǎn)過程中,直線B1C與直線AC1所成角的取值范圍為

【答案】[10°,50°]
【解析】解:∵在△ABC中,∠BAC=10°,∠ACB=30°,
將直線BC繞AC旋轉(zhuǎn)得到B1C,直線AC繞AB旋轉(zhuǎn)得到AC1 ,
如圖,平移CB1到A處,B1C繞AC旋轉(zhuǎn),
∴∠B1CA=30°,∠B1AC=150°,
AC1繞AB旋轉(zhuǎn),∴0°≤∠C1AC≤2∠CAB,
∴0≤∠C1AC≤20°,
設(shè)直線B1C與直線AC1所成角為α,
則∠B1AC﹣∠C1AC≤α≤∠B1AC+∠C1AC,
∵130°≤∠B1AC﹣∠C1AC≤150°,
150°≤∠B1AC+∠C1AC≤170°,
∴10°≤α≤50°或130°≤α≤170°(舍).
所以答案是:[10°,50°].

【考點(diǎn)精析】通過靈活運(yùn)用異面直線及其所成的角,掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“女大學(xué)生就業(yè)難”究竟有多難?其難在何處?女生在求職中是否收到了不公平對待?通過對某大學(xué)應(yīng)屆畢業(yè)生的調(diào)查與實(shí)證分析試對下列問題提出解答.為調(diào)查某地區(qū)大學(xué)應(yīng)屆畢業(yè)生的調(diào)查,用簡單隨機(jī)抽樣方法從該地區(qū)抽取了500為大學(xué)生做問卷調(diào)查,結(jié)果如下:

性別
是否公平

公平

40

30

不公平

160

270


(1)估計(jì)該地區(qū)大學(xué)生中,求職中收到了公平對待的學(xué)生的概率;
(2)能否有99%的把握認(rèn)為該地區(qū)的大學(xué)生求職中受到了不公平對待與性別有關(guān)?
(3)根據(jù)(2)的結(jié)論,能否提出更好的調(diào)查方法來估計(jì)該地區(qū)的大學(xué)生中,求職中是否受到了不公平對待學(xué)生的比例?說明理由.
附:K2=

P(K2≥k)

0.000

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+φ)+cos(2x+φ)的圖象與函數(shù) 的圖象關(guān)于y軸對稱,則φ的值可以為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線 =1(a,b>0)的右焦點(diǎn)F作一條漸近線的垂線,垂足為P,線段OP的垂直平分線交y軸于點(diǎn)Q(其中O為坐標(biāo)原點(diǎn)).若△OFP的面積是△OPQ的面積的4倍,則該雙曲線的離心率為(
A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,已知a1= ,an+1=
(1)證明:an<an+1
(2)證明:當(dāng)n≥2時(shí),( <2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對任意正整數(shù)n,設(shè)an是方程x2+ =1的正根.求證:
(1)an+1>an
(2) + +…+ <1+ + +…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓的一個(gè)頂點(diǎn)為B(0,1),B到焦點(diǎn)的距離為2.

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P,Q是橢圓上異于點(diǎn)B的任意兩點(diǎn),且BP⊥BQ,線段PQ的中垂線l與x軸的交點(diǎn)為(x0 , 0),求x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義域?yàn)镽的偶函數(shù)y=f(x)滿足f(x+2)+f(x)=0,且當(dāng)x∈[0,2]時(shí),f(x)=2﹣x2 , 則方程f(x)=2sinx在[﹣3π,3π]內(nèi)根的個(gè)數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲拋擲均勻硬幣2017次,乙拋擲均勻硬幣2016次,下列四個(gè)隨機(jī)事件的概率是0.5的是( )
①甲拋出正面次數(shù)比乙拋出正面次數(shù)多;
②甲拋出反面次數(shù)比乙拋出正面次數(shù)少;
③甲拋出反面次數(shù)比甲拋出正面次數(shù)多;
④乙拋出正面次數(shù)與乙拋出反面次數(shù)一樣多.
A.①②
B.①③
C.②③
D.②④

查看答案和解析>>

同步練習(xí)冊答案