如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點E為AB的中點.
(1)求證:BD1∥平面A1DE;
(2)求證:D1E⊥A1D;
(3)在線段AB上是否存在點M,使二面角D1-MC-D的大小為?若存在,求出AM的長;若不存在,請說明理由.
【答案】分析:(1)O是AD1的中點,連接OE,由中位線定理可得EO∥BD1,再由線面平行的判定定理可得BD1∥平面A1DE;
(2)由正方形AA1D1D與矩形ABCD所在平面互相垂直,根據(jù)面面垂直的性質(zhì)定理可得AB⊥平面ADD1A1,進而線線面垂直的性質(zhì)定理得到AB⊥A1D,結(jié)合A1D⊥AD1及線面垂直的判定定理,可得A1D⊥平面AD1E,進而D1E⊥A1D;
(3)以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系,設(shè)M(1,y,0)(0≤y≤2),分別求出平面D1MC的法向量和平面MCD的一個法向量,根據(jù)二面角D1-MC-D的大小為,結(jié)合向量夾角公式,構(gòu)造關(guān)于m的方程,解方程可得M占的坐標,進而求出AM長.
解答:證明:(1)四邊形ADD1A1為正方形,O是AD1的中點,點E為AB的中點,連接OE.
∴EO為△ABD1的中位線∴EO∥BD1…(2分)
又∵BD1?平面A1DE,OB?平面A1DE∴BD1∥平面A1DE  …(4分)
(2)由已知可得:AE⊥平面ADD1A1,A1D?平面ADD1A1
∴AE⊥A1D,
又∵A1D⊥AD1,AE∩AD1=A
∴A1D⊥平面AD1E,D1E?平面AD1E
∴A1D⊥D1E….(4分)
解:(3)由題意可得:D1D⊥平面ABCD,以點D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系,則D(0,0,0),C(0,2,0),A1(1,0,1),D1(0,0,1),
設(shè)M(1,y,0)(0≤y≤2),∵
設(shè)平面D1MC的法向量為n1=(x,y,z)則,得 
取D1MC是平面D1MC的一個法向量,而平面MCD的一個法向量為n2=(0,0,1)要使二面角D1-MC-D的大小為

解得:,當AM=時,二面角D1-MC-D的大小為…(6分)
點評:本題考查的知識點是用空間向量求平面間的夾角,空間中直線與直線之間的位置關(guān)系,直線與平面平行的判定,其中(1)的關(guān)鍵是證得EO∥BD1,(2)的關(guān)鍵是熟練掌握線線垂直,線面垂直與面面垂直之間的相互轉(zhuǎn)化,(3)的關(guān)鍵是設(shè)出M點坐標,求出兩個半平面的法向量,然后結(jié)合向量夾角公式構(gòu)造方程.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖2所示,在邊長為12的正方形AA'A'1A1中,點B,C在線段AA'上,且AB=3,BC=4,作BB1∥AA1,分別交A1A'1、AA'1于點B1、P,作CC1∥AA1,分別交A1A'1、AA'1于點C1、Q,將該正方形沿BB1、CC1折疊,使得A'A1′與AA1重合,構(gòu)成如圖3所示的三棱柱ABC-A1B1C1
(1)在三棱柱ABC-A1B1C1中,求證:AB⊥平面BCC1B1
(2)求平面APQ將三棱柱ABC-A1B1C1分成上、下兩部分幾何體的體積之比.
(3)在三棱柱ABC-A1B1C1中,求直線AP與直線A1Q所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖1所示,在邊長為12的正方形AA′A′1A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA′1分別交BB1,CC1于點P、Q,將該正方形沿BB1、CC1折疊,使得A′A′1與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1,請在圖2中解決下列問題:
(1)求證:AB⊥PQ;
(2)在底邊AC上有一點M,滿足AM;MC=3:4,求證:BM∥平面APQ.
(3)求直線BC與平面APQ所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖1所示,在邊長為12的正方形AA′A1′A1中,點B,C在線段AA′上,且AB=3,BC=4,作BB1∥AA1,分別交A1A1′、AA1′于點B1、P,作CC1∥AA1,分別交A1A1′、AA1′于點C1、Q,將該正方形沿BB1、CC1折疊,使得A′A1′與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1
(1)在三棱柱ABC-A1B1C1中,求證:AB⊥平面BCC1B1
(2)求平面APQ將三棱柱ABC-A1B1C1分成上、下兩部分幾何體的體積之比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

19、如圖1,在邊長為12的正方形AA′A′1A1中,BB1∥CC1∥AA1,且AB=3,BC=4,AA′1分別交BB1,CC1于點P、Q,將該正方形沿BB1、CC1折疊,使得A′A′1與AA1重合,構(gòu)成如圖2所示的三棱柱ABC-A1B1C1,請在圖2中解決下列問題:
(1)求證:AB⊥PQ;
(2)在底邊AC上有一點M,滿足AM;MC=3:4,求證:BM∥平面APQ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在邊長為12的正方形A1 AAA1′中,點B、C在線段AA′上,且AB = 3,BC = 4,作BB1AA1,分別交A1A1′、AA1′于點B1P;作CC1AA1,分別交A1A1′、AA1′于點C1Q;將該正方形沿BB1、CC1折疊,使得AA1′ 與AA1重合,構(gòu)成如圖所示的三棱柱ABCA1B1C1,在三棱柱ABCA1B1C1中, (Ⅰ)求證:AB⊥平面BCC1B1;  (Ⅱ)求面PQA與面ABC所成的銳二面角的大小.(Ⅲ)求面APQ將三棱柱ABCA1B1C1分成上、下兩部分幾何體的體積之比.

 


查看答案和解析>>

同步練習冊答案