【題目】2018年6月14日,世界杯足球賽在俄羅斯拉開(kāi)帷幕,世界杯給俄羅斯經(jīng)濟(jì)帶來(lái)了一定的增長(zhǎng),某紀(jì)念商品店的銷售人員為了統(tǒng)計(jì)世界杯足球賽期間商品的銷售情況,隨機(jī)抽查了該商品商店某天200名顧客的消費(fèi)金額情況,得到如圖頻率分布表:將消費(fèi)顧客超過(guò)4萬(wàn)盧布的顧客定義為”足球迷”,消費(fèi)金額不超過(guò)4萬(wàn)盧布的顧客定義為“非足球迷”。
消費(fèi)金額/萬(wàn)盧布 | 合計(jì) | ||||||
顧客人數(shù) | 9 | 31 | 36 | 44 | 62 | 18 | 200 |
(1)求這200名顧客消費(fèi)金額的中位數(shù)與平均數(shù)(同一組中的消費(fèi)金額用該組的中點(diǎn)值作代表;
(2)該紀(jì)念品商店的銷售人員為了進(jìn)一步了解這200名顧客喜歡紀(jì)念品的類型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再?gòu)倪@5人中隨機(jī)選取3人進(jìn)行問(wèn)卷調(diào)查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學(xué)期望。
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】
(1)在頻率分布直方圖中,中位數(shù)左邊和右邊的直方圖的面積應(yīng)該相等,由此可以估計(jì)中位數(shù)的值。平均數(shù)的估計(jì)值等于頻率直方圖中每個(gè)小矩形的面積乘以小矩形底邊中點(diǎn)的橫坐標(biāo)之和,這樣就可以求出這200名顧客消費(fèi)金額的中位數(shù)與平均數(shù)。
(2)通過(guò)頻率分布表可以求“足球迷”與“非足球迷”的人數(shù)比,這樣可以求出從“足球迷”“非足球迷”中選取5人,其中“足球迷”的人數(shù)及“非足球迷”的人數(shù),這樣可以求出選取的3人中非足球迷的人數(shù),取值是多少,求出它們相對(duì)應(yīng)的概率,最后列出分布列,算出數(shù)學(xué)期望。
(1)設(shè)這200名顧客消費(fèi)金額的中位數(shù)為t,則有
,解得
所以這200名顧客消費(fèi)金額的中位數(shù)為,
這200名顧客消費(fèi)金額的平均數(shù),
所以這200名顧客的消費(fèi)金額的平均數(shù)為3.367萬(wàn)盧布。
(2)由頻率分布表可知,“足球迷”與“非足球迷”的人數(shù)比為,
采用分層抽樣的方法,從“足球迷”“非足球迷”中選取5人,其中“足球迷”有人,“非足球迷”有人。
設(shè)為選取的3人中非足球迷的人數(shù),取值為1,2,3.則
。
分布列為:
1 | 2 | 3 | |
0.3 | 0.6 | 0.1 |
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在五面體中,側(cè)面是正方形,是等腰直角三角形,點(diǎn)是正方形對(duì)角線的交點(diǎn),且.
(1)證明:平面;
(2)若側(cè)面與底面垂直,求五面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)若函數(shù)存在極值,對(duì)于任意的,存在正實(shí)數(shù),使得,試判斷與的大小關(guān)系并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知線段的端點(diǎn)的坐標(biāo)是,端點(diǎn)在圓上運(yùn)動(dòng).
(Ⅰ)求線段的中點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)圓與曲線的兩交點(diǎn)為,求線段的長(zhǎng);
(Ⅲ)若點(diǎn)在曲線上運(yùn)動(dòng),點(diǎn)在軸上運(yùn)動(dòng),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為的導(dǎo)數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)證明:在區(qū)間上存在唯一零點(diǎn);
(Ⅲ)設(shè),若對(duì)任意,均存在,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,離心率為。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是橢圓上不同的三點(diǎn),若直線的斜率之積為,試問(wèn)從兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x,x∈R.
(1)當(dāng)m取何值時(shí),方程|f(x)-2|=m有一個(gè)解??jī)蓚(gè)解?
(2)若不等式[f(x)]2+f(x)-m>0在R上恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在上的函數(shù)滿足:①(為正常數(shù));②當(dāng)時(shí),,若的圖象上所有極大值對(duì)應(yīng)的點(diǎn)均落在同一條直線上,則___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校在2016年的自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如下表所示.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | 0.050 | |
第2組 | n | 0.350 | |
第3組 | 30 | p | |
第4組 | 20 | 0.200 | |
第5組 | 10 | 0.100 | |
合計(jì) | 100 | 1.000 |
(1)求頻率分布表中n,p的值,并估計(jì)該組數(shù)據(jù)的中位數(shù)(保留l位小數(shù));
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第3、4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,則第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定從6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至少有1名學(xué)生被甲考官面試的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com