【題目】函數(shù),,已知函數(shù),的圖象存在唯一的公切線.
(1)求的值;
(2)當(dāng),時(shí),證明:關(guān)于的不等式在上有解.
【答案】(1);(2)詳見解析.
【解析】
(1)由題意易知兩函數(shù)圖象有唯一公共點(diǎn),設(shè)為,從而得,解方程即可;
(2)根據(jù)條件可得在上有解,令,,然后利用導(dǎo)數(shù)求函數(shù)的最值,即可得解.
(1)函數(shù)的圖象存在唯一的公切線等價(jià)于的圖象有唯一的公共點(diǎn),且在處的切線重合,設(shè),
所以
所以,.
(2)證明:關(guān)于的不等式在上有解關(guān)于的不等式在上有解.
令,,
則,,
所以,,
因?yàn)?/span>,,且,在時(shí)單調(diào)遞增,
所以在時(shí)單調(diào)遞增,
因?yàn)?/span>,,
所以存在唯一,使得,
即,且.
所以在取得最小值
,
所以在上單調(diào)遞增,
所以,
即的值域?yàn)?/span>,
所以當(dāng)時(shí),
關(guān)于的不等式在上有解,
即證得,當(dāng),時(shí),關(guān)于的不等式在上有解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函數(shù)f(x)在R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍;
(3)是否存在實(shí)數(shù)a,使不等式f(x)≥2x-3對(duì)任意x∈R恒成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價(jià)進(jìn)行試銷,每本單價(jià)(元)試銷l天,得到如表單價(jià)(元)與銷量(冊(cè))數(shù)據(jù):
單價(jià)(元) | |||||
銷量(冊(cè)) |
(1)已知銷量與單價(jià)具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;
(2)若該書每本的成本為元,要使得售賣時(shí)利潤最大,請(qǐng)利用所求的線性相關(guān)關(guān)系確定單價(jià)應(yīng)該定為多少元?(結(jié)果保留到整數(shù))
附:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的展開式中第5項(xiàng)與第7項(xiàng)的二項(xiàng)數(shù)系數(shù)相等,且展開式的各項(xiàng)系數(shù)之和為1024,則下列說法正確的是( )
A.展開式中奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和為256
B.展開式中第6項(xiàng)的系數(shù)最大
C.展開式中存在常數(shù)項(xiàng)
D.展開式中含項(xiàng)的系數(shù)為45
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取名中學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表所示.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | ||
第2組 | ① | ||
第3組 | 30 | ② | |
第4組 | 20 | ||
第5組 | 10 |
(1)請(qǐng)先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;
(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從代號(hào)為A、B、C、D、E的5個(gè)人中任選2人
(1)列出所有可能的結(jié)果;
(2)若A、B、C三人為男性,D、E兩人為女性,求選出的2人中不全為男性的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形,,側(cè)面底面,,,分別為的中點(diǎn),點(diǎn)在線段上.
(Ⅰ)求證:平面;
(Ⅱ)若為的中點(diǎn),求證:平面;
(Ⅲ)當(dāng)時(shí),求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】總體由編號(hào)為的個(gè)個(gè)體組成,利用下面的隨機(jī)數(shù)表選取個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第行的第列和第列數(shù)字開始由左到右依次選取兩個(gè)數(shù)字,則選出來的第個(gè)個(gè)體的編號(hào)為( )
7816 | 6572 | 0802 | 6314 | 0702 | 4369 | 9728 | 0198 |
3204 | 9234 | 4935 | 8200 | 3623 | 4869 | 6938 | 7481 |
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)車間為了規(guī)定工時(shí)定額,需要確定加工某種零件所花費(fèi)的時(shí)同,為此進(jìn)行了6次試驗(yàn),收集數(shù)據(jù)如下:
零件數(shù)x(個(gè)) | 1 | 2 | 3 | 4 | 5 | 6 |
加工時(shí)間y(小時(shí)) | 3.5 | 5 | 6 | 7.5 | 9 | 11 |
(1)在給定的坐標(biāo)系中畫出散點(diǎn)圖,并指出兩個(gè)變量是正相關(guān)還是負(fù)相關(guān);
(2)求回歸直線方程;
(3)試預(yù)測(cè)加工7個(gè)零件所花費(fèi)的時(shí)間?
附:對(duì)于一組數(shù)據(jù),,……,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為:
,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com