在等差數(shù)列中,,
(1)求數(shù)列的通項(xiàng)公式;
(2)如果,求數(shù)列的前10項(xiàng)的和
(1)an=a1+(n-1)d=n-1.(2)S10=1023.
(1)設(shè)等差數(shù)列的公差為,由題意得,解得
所以;(2)由.代入等比數(shù)列求和公式可得
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的通項(xiàng)公式為,其前項(xiàng)和為,
(1)求并猜想的值;
(2)用數(shù)學(xué)歸納法證明(1)中所猜想的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某企業(yè)去年的純利潤為500萬元,因設(shè)備老化等原因,企業(yè)的生產(chǎn)能力將逐年下降,若不進(jìn)行技術(shù)改造,預(yù)測(cè)今年起每年比上一年純利潤減少20萬元.今年初該企業(yè)一次性投入資金600萬元進(jìn)行技術(shù)改造,預(yù)測(cè)在未扣除技術(shù)改造資金的情況下,第年(今年為第一年)的利潤為萬元(為正整數(shù));設(shè)從今年起的前年,若該企業(yè)不進(jìn)行技術(shù)改造的累計(jì)純利潤為萬元,進(jìn)行技術(shù)改造后的累計(jì)純利潤為萬元(需扣除技術(shù)改造資金).
(1)求的表達(dá)式;
(2)依上述預(yù)測(cè),從今年起該企業(yè)至少經(jīng)過多少年,進(jìn)行技術(shù)改造后的累計(jì)純利潤超過不進(jìn)行技術(shù)改造的累計(jì)純利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)設(shè),方程有唯一解,已知
,且.
(Ⅰ)求證:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,且,求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市投資甲、乙兩個(gè)工廠,2011年兩工廠的產(chǎn)量均為100萬噸,在今后的若干年內(nèi),甲工廠的年產(chǎn)量每年比上一年增加10萬噸,乙工廠第年比上一年增加萬噸,記2011年為第一年,甲、乙兩工廠第年的年產(chǎn)量分別為萬噸和萬噸.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若某工廠年產(chǎn)量超過另一工廠年產(chǎn)量的2倍,則將另一工廠兼并,問到哪一年底,其中哪一個(gè)工廠被另一個(gè)工廠兼并.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)等差數(shù)列{an}中,公差d≠0,已知數(shù)列是等比數(shù)列,其中k1=1,k2=7,k3=25.
(1)求數(shù)列{kn}的通項(xiàng);
(2)若a1=9,設(shè)bn= +,Sn=b12+b22+b32+…+ bn2, Tn= + + +…+,試判斷數(shù)列{Sn+Tn}前100項(xiàng)中有多少項(xiàng)是能被4整除的整數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

記等差數(shù)列的前n項(xiàng)和為,且公差,則當(dāng)取最大值時(shí), __________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)數(shù)列是等差數(shù)列, 若  則(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知數(shù)列是各項(xiàng)正的等比數(shù)列,且,則=    

查看答案和解析>>

同步練習(xí)冊(cè)答案