【題目】已知等比數(shù)列的公比,且,、的等差中項(xiàng).

1)求數(shù)列的通項(xiàng)公式;

2)試比較的大小,并說明理由;

3)若數(shù)列滿足,在每?jī)蓚(gè)之間都插入個(gè)2,使得數(shù)列變成了一個(gè)新的數(shù)列,試問:是否存在正整數(shù),使得數(shù)列的前項(xiàng)和?如果存在,求出的值;如果不存在,說明理由.

【答案】(1)(2),詳見解析(3)存在,使得

【解析】

1)根據(jù)條件列出方程組,解基本量即可.2)由(1)可知通項(xiàng)為:,對(duì)通項(xiàng)裂項(xiàng)可得:,從而可求出前n項(xiàng)和,即可比較出大小關(guān)系.3)由(2)可知:數(shù)列中含有 含有個(gè)2,所以數(shù)列中,的前所有項(xiàng)之和為,求出S,代入k的具體值,可知當(dāng)時(shí),,當(dāng)時(shí),,所以在的基礎(chǔ)之上加上471個(gè)2可得,把前面所有項(xiàng)的個(gè)數(shù)加起來即可得到m的值.

解:(1)由的等差中項(xiàng),得,

,解得.

,從而,

,∴解得.

,從而.

2)由(1)知.

3.

根據(jù)題意,數(shù)列中,(含項(xiàng))前的所有項(xiàng)的和為:

.

當(dāng)時(shí),,

當(dāng)時(shí),,

又∵,

時(shí),,

∴存在,使得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了鼓勵(lì)職員工作熱情,某公司對(duì)每位職員一年來的工作業(yè)績(jī)按月進(jìn)行考評(píng)打分;年終按照職員的月平均值評(píng)選公司最佳職員并給予相應(yīng)獎(jiǎng)勵(lì).已知職員一年來的工作業(yè)績(jī)分?jǐn)?shù)的莖葉圖如圖所示:

1)根據(jù)職員的業(yè)績(jī)莖葉圖求出他這一年的工作業(yè)績(jī)的中位數(shù)和平均數(shù);

2)若記職員的工作業(yè)績(jī)的月平均數(shù)為.

①已知該公司還有6位職員的業(yè)績(jī)?cè)?/span>100以上,分別是,,,,在這6人的業(yè)績(jī)里隨機(jī)抽取2個(gè)數(shù)據(jù),求恰有1個(gè)數(shù)據(jù)滿足(其中)的概率;

②由于職員的業(yè)績(jī)高,被公司評(píng)為年度最佳職員,在公司年會(huì)上通過抽獎(jiǎng)形式領(lǐng)取獎(jiǎng)金.公司準(zhǔn)備了9張卡片,其中有1張卡片上標(biāo)注獎(jiǎng)金為6千元,4張卡片的獎(jiǎng)金為4千元,另外4張的獎(jiǎng)金為2千元.規(guī)則是:獲獎(jiǎng)職員需要從9張卡片中隨機(jī)抽出3張,這3張卡片上的金額數(shù)之和就是該職員所得獎(jiǎng)金.記職員獲得的獎(jiǎng)金為(千元),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在①;②;③ 這三個(gè)條件中任選一個(gè),補(bǔ)充在下面問題中的橫線上,并解答相應(yīng)的問題.

中,內(nèi)角AB,C的對(duì)邊分別為a,bc,且滿足________________,,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,若輸出,則判斷框中為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列滿足

①存在可以生成的數(shù)列是常數(shù)數(shù)列;

②“數(shù)列中存在某一項(xiàng)”是“數(shù)列為有窮數(shù)列”的充要條件;

③若為單調(diào)遞增數(shù)列,則的取值范圍是;

④只要,其中,則一定存在;

其中正確命題的序號(hào)為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已過拋物線的焦點(diǎn)作直線交拋物線,兩點(diǎn),以,兩點(diǎn)為切點(diǎn)作拋物線的切線,兩條直線交于點(diǎn).

1)當(dāng)直線平行于軸時(shí),求點(diǎn)的坐標(biāo);

2)當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為橢圓的右焦點(diǎn),且橢圓長(zhǎng)軸的長(zhǎng)為4,、是橢圓上的兩點(diǎn);

1)求橢圓標(biāo)準(zhǔn)方程;

2)若直線經(jīng)過點(diǎn),且,求直線的方程;

3)若動(dòng)點(diǎn)滿足:,直線的斜率之積為,是否存在兩個(gè)定點(diǎn)、,使得為定值?若存在,求出、的坐標(biāo);若不存在,請(qǐng)說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列是公差的等差數(shù)列,且

1)求的前項(xiàng)的和;

2)若,問在數(shù)列中是否存在一項(xiàng)是正整數(shù)),使得成等比數(shù)列,若存在,求出的值,若不存在,請(qǐng)說明理由;

3)若存在自然數(shù)是正整數(shù)),滿足,使得成等比數(shù)列,求所有整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直三棱柱的底面是直角三角形,

求證:平面;

求二面角的余弦值;

求點(diǎn)到平面的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案