如圖,兩條線段AB、CD所在的直線是異面直線,平面a ,AB∥a ,M、N分別是AC、BD的中點,且AC是AB、CD的公垂線段.

(1)求證:MN∥a ;

(2)若AB=CD=a,AC=b,BD=c.求線段MN的長.

答案:略
解析:

(1)證明 過AC、AB作平面baCG.∵ABa ,∴ABCG

ACAB,∴ACCG,∵ACCD,∴ACa

CE=AB=a,則四邊形ACEB為矩形.

BEaDE中點F,則NFBEMC,∴MNCF

,,∴MNa

(2)解 ∵CE=AB=a,CD=a,

或解:連BM,DM,則,


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,兩條線段AB、CD所在的直線是異面直線,CD?平面α,AB∥α,M、N分別是AC、BD的中點,且AC是AB、CD的公垂線段.
(1)求證:MN∥α;
(2)若AB=CD=a,AC=b,BD=c,求線段MN的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,兩條線段AB、CD所在的直線是異面直線,CD?平面α,AB∥α,M、N分別是AC、BD的中點,且AC是AB、CD的公垂線段.
(1)求證:MN∥α;
(2)若AB=CD=a,AC=b,BD=c,求線段MN的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,兩條線段AB、CD所在的直線是異面直線,CD平面α,AB∥α,M、N分別是AC、BD的中點,且AC是AB、CD的公垂線段.

(1)求證:MN∥α;

(2)若AB=CD=a,AC=b,BD=c,求線段MN的長.

查看答案和解析>>

科目:高中數(shù)學 來源:2006年高考第一輪復習數(shù)學:9.4 兩個平面平行(解析版) 題型:解答題

如圖,兩條線段AB、CD所在的直線是異面直線,CD?平面α,AB∥α,M、N分別是AC、BD的中點,且AC是AB、CD的公垂線段.
(1)求證:MN∥α;
(2)若AB=CD=a,AC=b,BD=c,求線段MN的長.

查看答案和解析>>

同步練習冊答案