【題目】平面α外有兩條直線m和n,如果m和n在平面α內(nèi)的投影分別是m1和n1,給出下列四個(gè)命題:①m1⊥n1m⊥n;②m⊥nm1⊥n1;③m1與n1相交m與n相交或重合;④m1與n1平行m與n平行或重合.其中不正確的命題個(gè)數(shù)是( )
A. 1 B. 2
C. 3 D. 4
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018屆吉林省普通中學(xué)高三第二次調(diào)研】設(shè)橢圓的左焦點(diǎn)為,右頂點(diǎn)為,離心率為,短軸長為,已知是拋物線的焦點(diǎn).
(1)求橢圓的方程和拋物線的方程;
(2)若拋物線的準(zhǔn)線上兩點(diǎn)關(guān)于軸對(duì)稱,直線與橢圓相交于點(diǎn)(異于點(diǎn)),直線與軸相交于點(diǎn),若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex-ax2(x∈R),e=2.718 28…為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)f(x)在點(diǎn)P(0,1)處的切線方程;
(2)若函數(shù)f(x)為R上的單調(diào)遞增函數(shù),試求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)為定義在R上的偶函數(shù),當(dāng)x≥0時(shí),有f(x+1)=-f(x),且當(dāng)x∈[0,1)時(shí),f(x)=log2(x+1),給出下列命題
①f(2014)+f(-2015)=0;
②函數(shù)f(x)在定義域上是周期為2的函數(shù);
③直線y=x與函數(shù)f(x)的圖象有2個(gè)交點(diǎn);
④函數(shù)f(x)的值域?yàn)?/span>(-1,1).
其中正確的是( )
A. ①② B. ②③
C. ①④ D. ①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為(, 為參數(shù)),曲線的極坐標(biāo)方程為.
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;
(2)若直線經(jīng)過點(diǎn),求直線被曲線截得的線段的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,直線與x軸的交點(diǎn)為P,與拋物線的交點(diǎn)為Q,且.
(1)求拋物線的方程;
(2)過F的直線l與拋物線相交于A,D兩點(diǎn),與圓相交于B,C兩點(diǎn)(A,B兩點(diǎn)相鄰),過A,D兩點(diǎn)分別作拋物線的切線,兩條切線相交于點(diǎn)M,求△ABM與△CDM的面積之積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義域?yàn)?/span>R的周期函數(shù),最小正周期為2,且
f(1+x)=f(1-x),當(dāng)-1≤x≤0時(shí),f(x)=-x.
(1)判斷f(x)的奇偶性;
(2)試求出函數(shù)f(x)在區(qū)間[-1,2]上的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(0,+∞)上的單調(diào)函數(shù)f(x),x∈(0,+∞),f[f(x)﹣lnx]=1,則方程f(x)﹣f′(x)=1的解所在區(qū)間是 ( 。
A. (2,3) B. C. D. (1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)在區(qū)間內(nèi)至少存在一個(gè)實(shí)數(shù),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com