已知橢圓(a>b>0)的右焦點為,四個頂點構成的四邊形面積為12
(1)求橢圓的方程
(2)設點P(0,3),若在橢圓上的點M、N滿足,求實數(shù)λ的取值范圍.
【答案】分析:(1)由橢圓(a>b>0)的右焦點為,四個頂點構成的四邊形面積為12,得到,由此能求出橢圓的方程.
(2)設M(x1,y1),N(x2,y2),P(0,3)由,知(x1,y1-3)=λ(x2,y2-3),x1=λx2,y=kx+3 與橢圓聯(lián)立得(9k2+4)x2+54kx+45=0,由△≥0,得k2,由此入手,由韋達定理能夠求出實數(shù)λ的取值范圍.
解答:解:(1)∵橢圓(a>b>0)的右焦點為,
四個頂點構成的四邊形面積為12,
,
解得a=3,b=2,
∴橢圓的方程為
(2)設M(x1,y1),N(x2,y2),P(0,3)
,
(x1,y1-3)=λ(x2,y2-3),x1=λx2
y=kx+3 與橢圓聯(lián)立整理得
(9k2+4)x2+54kx+45=0,
x1+x2=(1+λ)x2=-,
,(1)
=λx22,(2)
將(1)代入(2)
 λ ,
整理得k2=,
在(9k2+4)x2+54kx+45=0中,
△=(54k)2-4(9k2+4)×45≥0,
整理得k2
將k2=代入,
整理得
所以
點評:通過幾何量的轉化考查用待定系數(shù)法求曲線方程的能力,通過直線與圓錐曲線的位置關系處理,考查學生的運算能力.通過向量與幾何問題的綜合,考查學生分析轉化問題的能力,探究研究問題的能力,并體現(xiàn)了合理消元,設而不解的代數(shù)變形的思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓=1(a>b>0)與雙曲線=1(m>0,n>0)有相同的焦點(-c,0)和(c,0),若c是a、m的等比中項,n2是2m2與c2的等差中項,則橢圓的離心率是(    )

A.                    B.               C.                 D.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東省、陽東一中高二上聯(lián)考文數(shù)試卷(解析版) 題型:解答題

(本題滿分14分)

如圖,已知橢圓=1(ab>0),F1、F2分別為橢圓的左、右焦點,A為橢圓的上的頂點,直線AF2交橢圓于另 一點B.

(1)若∠F1AB=90°,求橢圓的離心率;

(2)若=2,·,求橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年全國普通高等學校招生統(tǒng)一考試文科數(shù)學(天津卷解析版) 題型:解答題

已知橢圓(a>b>0),點在橢圓上。

(I)求橢圓的離心率。

(II)設A為橢圓的右頂點,O為坐標原點,若Q在橢圓上且滿足|AQ|=|AO|,求直線OQ的斜率的值。

【考點定位】本小題主要考查橢圓的標準方程和幾何性質、直線的方程、平面內兩點間距離公式等基礎知識. 考查用代數(shù)方法研究圓錐曲線的性質,以及數(shù)形結合的數(shù)學思想方法.考查運算求解能力、綜合分析和解決問題的能力.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年湖北省天門市高三天5月模擬文科數(shù)學試題 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經過點M(0,1),與橢圓C交于不同兩點A、B.

   (1)求橢圓C的標準方程;

   (2)當橢圓C的右焦點F在以AB為直徑的圓內時,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年河北省邯鄲市高二上學期期末考試數(shù)學理卷 題型:解答題

(本小題滿分分)

(普通高中)已知橢圓(a>b>0)的離心率,焦距是函數(shù)的零點.

(1)求橢圓的方程;

(2)若直線與橢圓交于兩點,,求k的值.

 

查看答案和解析>>

同步練習冊答案