方程2x-
x
=1的實根個數(shù)為
 
考點:函數(shù)的零點與方程根的關(guān)系
專題:函數(shù)的性質(zhì)及應用
分析:根據(jù)方程的根與函數(shù)零點的關(guān)系,將求方程cos2x=x的實根的個數(shù)的問題轉(zhuǎn)化為求函數(shù)y=cos2x與y=x的交點個數(shù)的關(guān)系,作圖分析可得答案.
解答: 解:方程2x-
x
=1的實根個數(shù),即即函數(shù)y=2x-1與y=
x
的圖象交點的個數(shù),
故可以將求根個數(shù)的問題轉(zhuǎn)化為求兩個函數(shù)圖象的交點個數(shù).
如圖在同一坐標系中作出y=2x-1(圖中紅線)與y=
x
的圖象(圖中藍線),由圖象可以看出兩圖象只有2個交點,
故方程的實根只有2個.
故答案為:2.
點評:本題主要考查函數(shù)零點與方程的根的關(guān)系,以及其變式方程的根與兩個相關(guān)函數(shù)交點坐標之間的關(guān)系,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,sin(C-A)=1,sinB=
1
3
,AC=
6
,則△ABC的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
AB
AC
的夾角為60°,|
AB
|=3,|
AC
|=2,若
AP
AB
+
AC
,且
AP
BC
,則實數(shù)λ的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有一個正三角形的兩個頂點在拋物線y2=2
3
x上,另一個頂點在原點,則這個正三角形的邊長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
3
)(ω>0)在區(qū)間[-
6
,
π
6
]的端點上恰取相鄰一個最大值點和一個最小值點,則
(1)ω的值為
 
;
(2)在x=-
π
3
,x=
π
6
,y=1和x軸圍成的矩形區(qū)域里擲一小球,小球恰好落在函數(shù)f(x)=sin(ωx+
π
3
)(x∈[-
π
3
,
π
6
])與x軸圍成的區(qū)域內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一張坐標紙折疊1次,使點(0,2)與點(-2,0)重合,且點(2008,2009)與點(m,n)重合,則n-m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2cos2
x
2
+sinx.
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間[0,π]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

樣本(x1,x2,…,xn)的平均數(shù)為x,樣本(y1,y2,…,yn)的平均數(shù)為y(y≠x),樣本(x1,x2,…,xn,y1,y2,…,yn)的平均數(shù)z=λx+μy,若直線l:(λ+2)x-(1+2μ)y+1-3λ=0,則下列敘述不正確的有
①直線l恒過定點(1,1);
②直線l與圓。▁-1)2+(y-1)2=4相交;
③直線l到原點的最大距離為
2
;
④直線l與直線l′:(2λ-3)x-(3-μ)y=0垂直.( 。
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①終邊相同的角的同名函數(shù)值相等;
②終邊不同的角的同名函數(shù)值不相等;
③若sinα>0,則α是第一或第二象限的角;
④若α是第二象限角,且P(x,y)是其終邊上的一點,則cosα=
-x
x2+y2
;
⑤若α、β是第二象限的角,且α>β,則cosα<cosβ.
其中正確的命題有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習冊答案