已知函數(shù).
(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)求的單調(diào)區(qū)間.
(3)設(shè),如果過(guò)點(diǎn)可作曲線(xiàn)的三條切線(xiàn),證明:
(1)
(2)是增區(qū)間;是減區(qū)間
(3)根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合極值的符號(hào)來(lái)得到比較大小。

試題分析:解:①根據(jù)題意,由于函數(shù).則可知函數(shù),那么曲線(xiàn)在點(diǎn)處的切線(xiàn)斜率為2,那么根據(jù)點(diǎn)斜式方程可知
②結(jié)合函數(shù)的導(dǎo)數(shù)的符號(hào)得到,那么當(dāng)導(dǎo)數(shù)大于零時(shí),得到x的范圍是是增區(qū)間;當(dāng)導(dǎo)數(shù)小于零時(shí),得到的x的范圍是是減區(qū)間
③設(shè)切點(diǎn)為,
易知,所以,
可化為 
于是,若過(guò)點(diǎn)可作曲線(xiàn)的三條切線(xiàn),則方程①有三個(gè)相異實(shí)數(shù)根,記,
,易知的極大值為,極小值為
綜上,如果過(guò)可作曲線(xiàn)三條切線(xiàn),則
即:
點(diǎn)評(píng):主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線(xiàn)點(diǎn)處的切線(xiàn)方程是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若曲線(xiàn)在點(diǎn)P處的切線(xiàn)平行于直線(xiàn),則點(diǎn)P的坐標(biāo)為 (     )
A.(1,0)B.(1,5)C.(1,-3)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù)(1)當(dāng)時(shí),求的最大值;(2)令,(),其圖象上任意一點(diǎn)處切線(xiàn)的斜率恒成立,求實(shí)數(shù)的取值范圍;(3)當(dāng),方程有唯一實(shí)數(shù)解,求正數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知曲線(xiàn)的一條切線(xiàn)的斜率為,則切點(diǎn)的橫坐標(biāo)為(  )
A.1B.C.4D.4或

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(1)若上的最大值為,求實(shí)數(shù)的值;
(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(3)在(1)的條件下,設(shè),對(duì)任意給定的正實(shí)數(shù),曲線(xiàn) 上是否存在兩點(diǎn)、,使得是以為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的導(dǎo)函數(shù)的圖象與x軸所圍
成的封閉圖形的面積為(   )
A.1n2B.1n2 C.1n2 D.1n2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)設(shè),試比較的大;
(2)是否存在常數(shù),使得對(duì)任意大于的自然數(shù)都成立?若存在,試求出的值并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,則=______________.

查看答案和解析>>

同步練習(xí)冊(cè)答案