在直角坐標系中,已知一個圓心在坐標原點,半徑為2的圓,從這個圓上任意一點P向y軸作垂線段,為垂足.
(1)求線段中點M的軌跡C的方程;
(2)過點Q(-2,0)作直線l與曲線C交于A、B兩點,設N是過點(-,0),且以為方向向量的直線上一動點,滿足(O為坐標原點),問是否存在這樣的直線l,使得四邊形OANB為矩形?若存在,求出直線l的方程;若不存在,說明理由.
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
OA |
OB |
OC |
OC |
2 |
π |
2 |
3π |
4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 |
2 |
1 |
22 |
1 |
23 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
3 |
AP |
PB |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com