【題目】對(duì)于集合A,定義了一種運(yùn)算“”,使得集合A中的元素間滿足條件:如果存在元素,使得對(duì)任意,都有,則稱元素e是集合A對(duì)運(yùn)算“”的單位元素.例如:,運(yùn)算“”為普通乘法;存在,使得對(duì)任意,都有,所以元素1是集合R對(duì)普通乘法的單位元素.下面給出三個(gè)集合及相應(yīng)的運(yùn)算“”:

,運(yùn)算“”為普通減法;

,運(yùn)算“”為矩陣加法;

(其中M是任意非空集合),運(yùn)算“”為求兩個(gè)集合的交集.

其中對(duì)運(yùn)算“”有單位元素的集合序號(hào)為(  )

A. ①②B. ①③C. ①②③D. ②③

【答案】D

【解析】

試題,運(yùn)算為普通減法,而普通減法不滿足交換律,故沒有單位元素;

{表示階矩陣,},運(yùn)算為矩陣加法,其單位元素為全為0的矩陣;(其中是任意非空集合),運(yùn)算為兩個(gè)集合的交集,其單位元素為集合,故答案為D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季取暖時(shí)減少能源消耗,業(yè)主決定對(duì)房屋的屋頂和外墻噴涂某種新型隔熱材料,該材料有效使用年限為20年.已知房屋外表噴一層這種隔熱材料的費(fèi)用為每毫米厚6萬元,且每年的能源消耗費(fèi)用(萬元)與隔熱層厚度(毫米)滿足關(guān)系:.設(shè)為隔熱層建造費(fèi)用與年的能源消耗費(fèi)用之和.

(1)請(qǐng)解釋的實(shí)際意義,并求的表達(dá)式;

(2)當(dāng)隔熱層噴涂厚度為多少毫米時(shí),業(yè)主所付的總費(fèi)用最少?并求此時(shí)與不建隔熱層相比較,業(yè)主可節(jié)省多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某地區(qū)年齡在25~55歲的人員中,隨機(jī)抽出100人,了解他們對(duì)今年兩會(huì)的熱點(diǎn)問題的看法,繪制出頻率分布直方圖如圖所示,則下列說法正確的是( )

A. 抽出的100人中,年齡在40~45歲的人數(shù)大約為20

B. 抽出的100人中,年齡在35~45歲的人數(shù)大約為30

C. 抽出的100人中,年齡在40~50歲的人數(shù)大約為40

D. 抽出的100人中,年齡在35~50歲的人數(shù)大約為50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:()的短軸長(zhǎng)為2,離心率為

(1)求橢圓C的方程

(2)若過點(diǎn)M(2,0)的引斜率為的直線與橢圓C相交于兩點(diǎn)GH,設(shè)P為橢圓C上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)復(fù)平面,分別對(duì)應(yīng)復(fù)數(shù),已知,且為常數(shù)).

1)設(shè),用數(shù)學(xué)歸納法證明:;

2)寫出數(shù)列的通項(xiàng)公式;

3)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù).在平面直角坐標(biāo)系xOy中,已知點(diǎn),直線l:,曲線Γ:,).l與x軸交于點(diǎn)A、與Γ交于點(diǎn)B.P、Q分別是曲線Γ與線段AB上的動(dòng)點(diǎn).

(1)用t表示點(diǎn)B到點(diǎn)F的距離;

(2)設(shè),線段OQ的中點(diǎn)在直線FP上,求△AQP的面積;

(3)設(shè),是否存在以FP、FQ為鄰邊的矩形FPEQ,使得點(diǎn)E在Γ上?若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)有兩個(gè)極值點(diǎn).

(1)求的取值范圍;

(2)的兩個(gè)極值點(diǎn),證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的左、右焦點(diǎn)分別為、,離心率為,過焦點(diǎn)且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1

求橢圓C的方程;

點(diǎn)為橢圓C上一動(dòng)點(diǎn),連接,設(shè)的角平分線PM交橢圓C的長(zhǎng)軸于點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)觀測(cè),某公路段在某時(shí)段內(nèi)的車流量(千輛/小時(shí))與汽車的平均速度(千米/小時(shí))之間有函數(shù)關(guān)系:

1)在該時(shí)段內(nèi),當(dāng)汽車的平均速度為多少時(shí)車流量最大?最大車流量為多少?(精確到0.01)

2)為保證在該時(shí)段內(nèi)車流量至少為10千輛/小時(shí),則汽車的平均速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

同步練習(xí)冊(cè)答案