【題目】已知△ABC的頂點A(6,1),AB邊上的中線CM所在直線方程為2x﹣y﹣7=0,AC邊上的高BH所在直線方程為x﹣2y﹣6=0.
(1)求點C的坐標;
(2)求直線BC的方程.
【答案】
(1)解:依題意知:kAC=﹣2,A(6,1),
∴l(xiāng)AC方程為:2x+y﹣13=0,
聯(lián)立lAC、lCM得 ,
∴C(5,3)
(2)解:設B(x0,y0),AB的中點M為( , ),
代入2x﹣y﹣7=0,得2x0﹣y0﹣3=0,
∴ ,∴B(0,﹣3),
∴kBC= ,∴直線BC的方程為y= x﹣3,
即6x﹣5y﹣15=0
【解析】(1)先利用直線BH與直線AC互相垂直求得直線AC的斜率,進而求得直線AC的方程,再利用直線AC與直線CM交于點C進行求解;(2)設出點B的坐標,并用其表示出線段AB的中點M的坐標,代入直線CM的方程求得點B橫坐標與縱坐標的關系,代入直線BH的方程中求得點B的坐標,從而求得直線BC的方程.
【考點精析】根據(jù)題目的已知條件,利用一般式方程的相關知識可以得到問題的答案,需要掌握直線的一般式方程:關于的二元一次方程(A,B不同時為0).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x+1|+|2x﹣a|.
(1)若f(x)的最小值為2,求a的值;
(2)若f(x)≤|2x﹣4|的解集包含[﹣2,﹣1],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)定義在上且滿足下列兩個條件:
①對任意都有;
②當時,有,
(1)求,并證明函數(shù)在上是奇函數(shù);
(2)驗證函數(shù)是否滿足這些條件;
(3)若,試求函數(shù)的零點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題p:經過定點P0(x0 , y0)的直線都可以用方程y﹣y0=k(x﹣x0)表示,命題q:直線xtan +y﹣7=0的傾斜角是 ,則下列命題是真命題的為( )
A.(p)∧q
B.p∧q
C.p∨(q)
D.(P)∧(q)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓C的兩個焦點是F1、F2 , 過F1的直線與橢圓C交于P、Q,若|PF2|=|F1F2|,且5|PF1|=6|F1Q|,則橢圓的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 是平面四邊形的對角線, , ,且.現(xiàn)在沿所在的直線把折起來,使平面平面,如圖.
(1)求證: 平面;
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為迎接2017年“雙11”,“雙12”購物狂歡節(jié)的來臨,某青花瓷生產廠家計劃每天生產湯碗、花瓶、茶杯這三種瓷器共100個,生產一個湯碗需5分鐘,生產一個花瓶需7分鐘,生產一個茶杯需4分鐘,已知總生產時間不超過10小時.若生產一個湯碗可獲利潤5元,生產一個花瓶可獲利潤6元,生產一個茶杯可獲利潤3元.
(1)使用每天生產的湯碗個數(shù)x與花瓶個數(shù)y表示每天的利潤ω(元);
(2)怎樣分配生產任務才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+a2(a、b∈R)
(1)若函數(shù)f(x)在x=1處有極值為10,求b的值;
(2)若a=﹣4,f(x)在x∈[0,2]上單調遞增,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在實數(shù)集R中,已知集合A={x| ≥0}和集合B={x||x﹣1|+|x+1|≥2},則A∩B=( )
A.{﹣2}∪[2,+∞)
B.(﹣∞,﹣2]∪[2,+∞)
C.[2,+∞)
D.{0}∪[2,+∞)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com