【題目】下列命題中正確的是( )
A.非零向量滿足,則與的夾角為
B.若,則的夾角為銳角
C.若,則一定是直角三角形
D.的外接圓的圓心為O,半徑為1,若,且,則向量在向量方向上的投影的數(shù)量為
【答案】ACD
【解析】
由平面向量的加、減法以及向量的夾角可判斷A;利用向量的數(shù)量積的定義即可判斷B;利用向量減法的幾何意義以及向量的數(shù)量積即可判斷C;根據(jù)題意可得三角形AOC為等邊三角形,再根據(jù)向量數(shù)量積的幾何意義即可求解.
對于A,由向量減法法則及題意知,向量,可以組成一個等邊三角形,
向量的夾角為,又由向量加法的平行四邊形法則知,
以為鄰邊的平行四邊形為菱形,所以與的夾角為,故選項A中說法正確;
對于B,當(dāng)時,且同向時不成立,故選項B中說法錯誤;
對于C,因為,
所以
,所以,即,
所以是直角三角形,故選項C中說法正確;
對于D,作圖如下,其中四邊形ABCD為平行四邊形,因為,
所以O為AD、BC的交點,又,所以三角形AOC為等邊三角形,
所以,且BC為外接圓的直徑,所以.在直角三角形ABC中,,,所以,則向量在向量方向上的投影的數(shù)量為
.故選項D中說法正確.
故選:ACD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,給定下列命題:
①若方程有兩個不同的實數(shù)根,則;
②若方程恰好只有一個實數(shù)根,則;
③若,總有恒成立,則;
④若函數(shù)有兩個極值點,則實數(shù).
則正確命題的個數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓:的右焦點,橢圓上任意一點 到點的距離與點到直線:
的距離之比為。
(1)求直線方程;
(2)設(shè)為橢圓的左頂點,過點的直線交橢圓于、兩點,直線、與直線分別相交于、兩點,以為直徑的圓是否恒過一定點?若是,求出定點坐標(biāo);若不是,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知點P是所在平面外一點,M,N,K分別AB,PC,PA的中點,平面平面.
(1)求證:平面PAD;
(2)直線PB上是否存在點H,使得平面平面ABCD,并加以證明;
(3)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,且滿足Sn+n=2an(n∈N*).
(1)證明:數(shù)列{an+1}為等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)若bn=(2n+1)an+2n+1,數(shù)列{bn}的前n項和為Tn.求滿足不等式>2010的n的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,、是過點夾角為的兩條直線,且與圓心為,半徑長為的圓分別相切,設(shè)圓周上一點到、的距離分別為、,那么的最小值為(____).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某花店每天以每枝元的價格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝元價格出售,如果當(dāng)天賣不完,剩下的玫瑰花作垃圾處理.
(1)若花店一天購進(jìn)枝玫瑰花,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:枝, )的函數(shù)解析式;
(2)花店記錄了天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量 | |||||||
頻數(shù) |
以天的各需求量的頻率作為各需求量發(fā)生的概率.
若花店一天購進(jìn)枝玫瑰花, 表示當(dāng)天的利潤(單位:元),求的分布列, 數(shù)學(xué)期望及方差;
若花店一天購進(jìn)枝或枝玫瑰花,你認(rèn)為應(yīng)購進(jìn)枝還是枝?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD和矩形ABEF中,,,矩形ABEF可沿AB任意翻折.
(1)求證:當(dāng)點F,A,D不共線時,線段MN總平行于平面ADF.
(2)“不管怎樣翻折矩形ABEF,線段MN總與線段FD平行”這個結(jié)論正確嗎?如果正確,請證明;如果不正確,請說明能否改變個別已知條件使上述結(jié)論成立,并給出理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com