以下是某地搜集到的新房屋的銷售價格y和房屋的面積x的數(shù)據(jù):

房屋面積(m2)
115
110
80
135
105
銷售價格(萬元)
24.8
21.6
18.4
29.2
22
(1)畫出數(shù)據(jù)對應的散點圖;
(2)求線性回歸方程,并在散點圖中加上回歸直線;
(3)根據(jù)(2)的結(jié)果估計當房屋面積為150 m2時的銷售價格.

(1)數(shù)據(jù)對應的散點圖如圖所示.

(2)所求回歸直線方程為=0.1962x+1.8166.
(3)銷售價格的估計值為=0.1962×150+1.8166=31.2466(萬元).

解析試題分析:(1)數(shù)據(jù)對應的散點圖如圖所示.

(2)=109,=23.2, (xi)2=1570,
 (xi)(yi)=308,
設所求的回歸直線方程為=bx+a,
則b=≈0.1962,
a=-b=23.2-109×≈1.8166,
故所求回歸直線方程為=0.1962x+1.8166.
(3)據(jù)(2),當x=150 m2時,銷售價格的估計值為
=0.1962×150+1.8166=31.2466(萬元).
考點:回歸直線方程
點評:中檔題,確定回歸直線方程,關鍵是準確計算等相關元素,對計算能力要求較高。高考題中,常常以填空題形式出現(xiàn)。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

成都市為“市中學生知識競賽”進行選拔性測試,且規(guī)定:成績大于或等于90分的有參賽資格,90分以下(不包括90分)的則被淘汰。若現(xiàn)有500人參加測試,學生成績的頻率分布直方圖如下:

(I)求獲得參賽資格的人數(shù);
(II)根據(jù)頻率直方圖,估算這500名學生測試的平均成績;
(III)若知識競賽分初賽和復賽,在初賽中每人最多有5次選題答題的機會,累計答對3題或答錯3題即終止,答對3題者方可參加復賽,已知參賽者甲答對每一個問題的概率都相同,并且相互之間沒有影響,已知他連續(xù)兩次答錯的概率為,求甲在初賽中答題個數(shù)的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某種報紙,進貨商當天以每份進價元從報社購進,以每份售價元售出。若當天賣不完,剩余報紙報社以每份元的價格回收。根據(jù)市場統(tǒng)計,得到這個季節(jié)的日銷售量(單位:份)的頻率分布直方圖(如圖所示),將頻率視為概率。

(Ⅰ)求頻率分布直方圖中的值;
(Ⅱ)若進貨量為(單位:份),當時,求利潤的表達式;
(Ⅲ)若當天進貨量,求利潤的分布列和數(shù)學期望(統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了研究玉米品種對產(chǎn)量的影響,某農(nóng)科院對一塊試驗田種植的一批玉米共10000 株的生長情況進行研究,現(xiàn)采用分層抽樣方法抽取50株作為樣本,統(tǒng)計結(jié)果如下:

 
高莖
矮莖
合計
圓粒
11
19
30
皺粒
13
7
20
合計
24
26
50
 (1) 現(xiàn)采用分層抽樣的方法,從這個樣本中取出10株玉米,再從這10株玉米中隨機選出3株,求選到的3株之中既有圓粒玉米又有皺粒玉米的概率;
(2) 根據(jù)對玉米生長情況作出的統(tǒng)計,是否能在犯錯誤的概率不超過0.050的前提下認為玉米的圓粒與玉米的高莖有關?(下面的臨界值表和公式可供參考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
,其中)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校為了解高三年級不同性別的學生對體育課改上自習課的態(tài)度(肯定還是否定),進行了如下的調(diào)查研究.全年級共有名學生,男女生人數(shù)之比為,現(xiàn)按分層抽樣方法抽取若干名學生,每人被抽到的概率均為
(1)求抽取的男學生人數(shù)和女學生人數(shù);
(2)通過對被抽取的學生的問卷調(diào)查,得到如下列聯(lián)表:

 
否定
肯定
總計
男生
 
10
 
女生
30
 
 
總計
 
 
 
①完成列聯(lián)表;
②能否有的把握認為態(tài)度與性別有關?
(3)若一班有名男生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度;二班有名女生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度.
現(xiàn)從這人中隨機抽取一男一女進一步詢問所持態(tài)度的原因,求其中恰有一人持肯定態(tài)度一人持否定態(tài)度的概率.
解答時可參考下面臨界值表:

0.10
0.05
0.025
0.010
0.005

2.706
3.841
5.024
6.635
7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

給出施化肥量(kg)對水稻產(chǎn)量(kg)影響的試驗數(shù)據(jù):

施化肥量x
 
15
 
20
 
25
 
30
 
水稻產(chǎn)量y
 
330
 
345
 
365
 
405
 
(1)試求出回歸直線方程;
(2)請估計當施化肥量為10時,水稻產(chǎn)量為多少?
(已知:7.5×31.25+2.5×16.25+2.5×3.75+7.5×43.75=612.5,2×7.5×7.5+2×2.5×2.5=125)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校的研究性學習小組為了研究高中學生的身體發(fā)育狀況,在該校隨機抽出120名17至18周歲的男生,其中偏重的有60人,不偏重的也有60人。在偏重的60人中偏高的有40人,不偏高的有20人;在不偏重的60人中偏高和不偏高人數(shù)各占一半
(1)根據(jù)以上數(shù)據(jù)建立一個列聯(lián)表:

 
偏重
不偏重
合計
偏高
 
 
 
不偏高
 
 
 
合計
 
 
 
(2)請問該校17至18周歲的男生身高與體重是否有關?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某市調(diào)研考試后,某校對甲、乙兩個文科班的數(shù)學考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.

 
優(yōu)秀
非優(yōu)秀
合計
甲班
10
 
 
乙班
 
30
 
合計
 
 
110
(1)請完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優(yōu)秀的學生中抽取一人:把甲班優(yōu)秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)之和為被抽取人的序號.試求抽到9號或10號的概率.附: 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某種產(chǎn)品的廣告費用支出(百萬)與銷售額(百萬)之間有如下的對應數(shù)據(jù):


2
4
5
6
8

30
40
60
50
70
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計廣告費用為10(百萬)時,銷售收入的值.

查看答案和解析>>

同步練習冊答案