【題目】設(shè)拋物線的焦點(diǎn)為F,已知直線與拋物線C交于A,B兩點(diǎn)(A,B兩點(diǎn)分別在軸的上、下方).
(1)求證:;
(2)已知弦長(zhǎng),試求:過(guò)A,B兩點(diǎn),且與直線相切的圓D的方程.
【答案】(1)見(jiàn)解析;(2)或
【解析】
(1) 由與得,解得 ,又 ,從而得到結(jié)果;(2) 由弦長(zhǎng)及拋物線定義可得m=1.圓心D在線段AB的中垂線上,求出中垂線方程,設(shè)出所求圓的圓心坐標(biāo)為,借助點(diǎn)到線的距離公式可得圓D的方程.
(1)由與消去x,得,
設(shè),
則為方程的兩個(gè)不同的根,
所以,
因?yàn)?/span>A,F,B三點(diǎn)共線,所以
(2)因?yàn)?/span>AB=8,
所以.
所以,
所以m=1.
線段AB的中點(diǎn)坐標(biāo)為(3m,2m),即(3,2),
所以線段AB的中垂線方程為,
因?yàn)樗蟮膱A過(guò)A,B點(diǎn),所以圓心D在直線上,
設(shè)所求圓的圓心坐標(biāo)為,
不難算得兩條平行線與
之間的距離,
即D到直線的距離,
由D到直線的距離得.
設(shè)圓D的半徑為R,
則,
因?yàn)檫^(guò)點(diǎn)A與點(diǎn)B的圓與直線相切,所以,
所以,
解得,或,
所以所求圓的方程為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓 的左右焦點(diǎn)分別為的、,離心率為;過(guò)拋物線焦點(diǎn)的直線交拋物線于、兩點(diǎn),當(dāng)時(shí), 點(diǎn)在軸上的射影為。連結(jié)并延長(zhǎng)分別交于、兩點(diǎn),連接; 與的面積分別記為, ,設(shè).
(Ⅰ)求橢圓和拋物線的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知奇函數(shù).
(1)求函數(shù)的值域;
(2)判斷函數(shù)的單調(diào)性,并給出證明;
(3)若函數(shù)在區(qū)間上有兩個(gè)不同的零點(diǎn),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,建立平面直角坐標(biāo)系,軸在地平面上,軸垂直于地平面,單位長(zhǎng)度為1千米.某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程表示的曲線上,其中與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).
(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大。,其飛行高度為3.2千米,試問(wèn)它的橫坐標(biāo)不超過(guò)多少時(shí),炮彈可以擊中它?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的偶函數(shù),且時(shí),.
(1)求,;
(2)求函數(shù)的解析式;
(3)若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為了激勵(lì)業(yè)務(wù)員的積極性,對(duì)業(yè)績(jī)?cè)?/span>60萬(wàn)到200萬(wàn)的業(yè)務(wù)員進(jìn)行獎(jiǎng)勵(lì)獎(jiǎng)勵(lì)方案遵循以下原則:獎(jiǎng)金y(單位:萬(wàn)元)隨著業(yè)績(jī)值x(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不低于1.5萬(wàn)元同時(shí)獎(jiǎng)金不超過(guò)業(yè)績(jī)值的5%.
(1)若某業(yè)務(wù)員的業(yè)績(jī)?yōu)?/span>100萬(wàn)核定可得4萬(wàn)元獎(jiǎng)金,若該公司用函數(shù)(k為常數(shù))作為獎(jiǎng)勵(lì)函數(shù)模型,則業(yè)績(jī)200萬(wàn)元的業(yè)務(wù)員可以得到多少獎(jiǎng)勵(lì)?(已知,)
(2)若采用函數(shù)作為獎(jiǎng)勵(lì)函數(shù)模型試確定最小的正整數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】7人排成一排,按以下要求分別有多少種排法?
(1)甲、乙兩人排在一起;
(2)甲不在左端、乙不在右端;
(3)甲、乙、丙三人中恰好有兩人排在一起.(答題要求:先列式,后計(jì)算)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知p:x2-(3+a)x+3a<0,其中a<3;q:x2+4x-5>0.
(1)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍;
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)監(jiān)測(cè),當(dāng)前臺(tái)風(fēng)中心位于城市A(看做一點(diǎn))的東偏南角方向,300 km的海面P處,并以20km / h的速度向西偏北45°方向移動(dòng).臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60 km,并以10km / h的速度不斷增大.
(1) 問(wèn)10小時(shí)后,該臺(tái)風(fēng)是否開(kāi)始侵襲城市A,并說(shuō)明理由;
(2) 城市A受到該臺(tái)風(fēng)侵襲的持續(xù)時(shí)間為多久?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com