若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),則k的值為( 。
A、-
3
3
B、
3
C、-
2
2
D、
2
分析:直線過定點,直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.
解答:精英家教網(wǎng)解:如圖,直線過定點(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴k=±
3

故選A.
點評:本題考查過定點的直線系問題,以及直線和圓的位置關(guān)系,是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線C的兩個焦點分別為F1(-2
2
,0)
、F2(2
2
,0)
,雙曲線上一點P到F1、F2的距離的差的絕對值等于4.
(Ⅰ)求雙曲線的標準方程;
(Ⅱ)若直線y=kx-1與雙曲線C沒有公共點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex,x∈R.
(Ⅰ)若直線y=kx+1與f(x)的反函數(shù)的圖象相切,求實數(shù)k的值;
(Ⅱ)設(shè)x>0,討論曲線y=
f(x)
x2
與直線y=m(m>0)公共點的個數(shù);
(Ⅲ)設(shè)a<b,比較f(
a+b
2
)
,
f(b)-f(a)
b-a
的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一焦點在x軸上,中心在原點的雙曲線的實軸等于虛軸,且圖象經(jīng)過點
2,
3

(1)求該雙曲線的方程;
(2)若直線y=kx+1與該雙曲線只有一個公共點,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•陜西)已知函數(shù)f(x)=ex,x∈R.
(Ⅰ) 若直線y=kx+1與f(x)的反函數(shù)的圖象相切,求實數(shù)k的值;
(Ⅱ) 設(shè)x>0,討論曲線y=f(x)與曲線y=mx2(m>0)公共點的個數(shù).
(Ⅲ) 設(shè)a<b,比較
f(a)+f(b)
2
f(b)-f(a)
b-a
的大小,并說明理由.

查看答案和解析>>

同步練習冊答案