(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
(1);(2)的取值范圍是 ;(3)見解析。
【解析】
試題分析:(Ⅰ)求導函數(shù),利用圖象在點(1,f(1))處的切線與直線y=2x+1平行,可得f′(1)=a-b=2,即可求a,b滿足的關系式;
(Ⅱ)由(Ⅰ)知,構造新函數(shù)g(x)=f(x)-2lnx=-2lnx,x∈[1,+∞)則根據(jù)g(1)=0,g′(x),比較對應方程根的大小,進行分類討論,即可求得a的取值范圍;
(1),根據(jù)題意,即 ………3分
(2)由(1)知,,………4分
令,
則,= ………5分
①當時, ,
若,則,在為減函數(shù),存在,
即在上不恒成立. ………6分
②時,,當時,,在增函數(shù),又,
∴,∴恒成立.………7分
綜上所述,所求的取值范圍是 …………8分
(3)由(2)知當時,在上恒成立.取得
令,得,
即 ……10分
∴ ………11分
上式中令n=1,2,3,…,n,并注意到:
然后n個不等式相加得到 ………14分
考點:本試題主要考查了導數(shù)知識的運用,考查恒成立問題,考查不等式的證明。屬于中檔試題。
點評:解決該試題的關鍵是正確求出導函數(shù),構造新函數(shù),利用函數(shù)的單調性解題,這是解決一般不等式恒成立問題的常用的方法,也是比較重要的方法。
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com