拋物線y2=2Px,過點(diǎn)A(2,4),F(xiàn)為焦點(diǎn),定點(diǎn)B的坐標(biāo)為(8,-8),則|AF|∶|BF|值為


  1. A.
    1∶4
  2. B.
    1∶2
  3. C.
    2∶5
  4. D.
    3∶8
C
試題分析:因?yàn)閽佄锞y2=2Px,過點(diǎn)A(2,4),F(xiàn)為焦點(diǎn),那么可知16=4p,p=4,可知其方程為y2=8x,則利用拋物線定義得到BF=10和AF=4的長(zhǎng)度,那么可知距離的比值為2:5,故選C.
考點(diǎn):本試題考查了拋物線的性質(zhì)運(yùn)用。
點(diǎn)評(píng):解決拋物線的問題,一般都要考查其定義的運(yùn)用,也就是拋物線上任意一點(diǎn)到其焦點(diǎn)的距離等于其到準(zhǔn)線的距離來表示焦半徑的長(zhǎng)度,屬于基礎(chǔ)題。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖過拋物線y2=2px(p>0)的焦點(diǎn)F的直線依次交拋物線及準(zhǔn)線于點(diǎn)A,B,C,若|BC|=2|BF|,且|AF|=3,則拋物線的方程為( 。
A、y2=
3
2
x
B、y2=9x
C、y2=
9
2
x
D、y2=3x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)上的點(diǎn)M(4,y)到焦點(diǎn)F的距離為5,O為坐標(biāo)原點(diǎn),則△OFM的面積為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px,(p>0)繞焦點(diǎn)依逆時(shí)針方向旋轉(zhuǎn)90°所得拋物線方程為…( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)若拋物線y2=2px(p>0)的焦點(diǎn)到雙曲線x2-y2=1的漸近線的距離為
3
2
2
,則p的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)A(-1,0)作拋物線y2=2px(p>0)的兩條切線,切點(diǎn)分別為B、C,且△ABC是正三角形,則拋物線方程為
y2=
4
3
x
y2=
4
3
x

查看答案和解析>>

同步練習(xí)冊(cè)答案