如圖,過圓O外一點M作它的一條切線,切點為A,過A點作直線AP垂直直線OM,垂足為P.

(1)證明:OM·OP=OA2;
(2)N為線段AP上一點,直線NB垂直直線ON,且交圓O于B點.過B點的切線交直線ON于K.證明:∠OKM=90°.

見解析

解析證明 (1)因為MA是圓O的切線,所以O(shè)A⊥AM.又因為AP⊥OM,在Rt△OAM中,由射影定理知,OA2=OM·OP.
(2)因為BK是圓O的切線,BN⊥OK,同(1),有OB2=ON·OK,又OB=OA,所以O(shè)P·OM=ON·OK,
.又∠NOP=∠MOK,
所以△ONP∽△OMK,故∠OKM=∠OPN=90°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線;設(shè)為曲線上的一個不在軸上的動點,為坐標(biāo)原點,過點的平行線交曲線兩個不同的點.
(1)求曲線的方程;
(2)試探究的比值能否為一個常數(shù)?若能,求出這個常數(shù),若不能,請說明理由;
(3)記的面積為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,圓O1與圓O2的半徑都是1,O1O2=4,過動點P分別作圓O1、圓O2的切線PM、PN(M、N分別為切點),使得PM=PN,試建立適當(dāng)?shù)淖鴺?biāo)系,并求動點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C經(jīng)過點A(-2,0),B(0,2),且圓心C在直線yx上,又直線lykx+1與圓C相交于P、Q兩點.
(1)求圓C的方程;
(2)若·=-2,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,點A(0,3),直線ly=2x-4.設(shè)圓C的半徑為1,圓心在l上.
 
(1)若圓心C也在直線yx-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標(biāo)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知以點C為圓心的圓與x軸交于點O,A,與y軸交于點O,B,其中O為坐標(biāo)原點.
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=-2x+4與圓C交于點M,N,若|OM|=|ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線C上的動點P()滿足到定點A(-1,0)的距離與到定點B(1,0)距離之比為
(1)求曲線C的方程。
(2)過點M(1,2)的直線與曲線C交于兩點M、N,若|MN|=4,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,且經(jīng)過點,圓的直徑為的長軸.如圖,是橢圓短軸端點,動直線過點且與圓交于兩點,垂直于交橢圓于點.

(1)求橢圓的方程;
(2)求 面積的最大值,并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓的方程為,點是坐標(biāo)原點.直線與圓交于兩點.
(1)求的取值范圍;
(2)設(shè)是線段上的點,且.請將表示為的函數(shù).

查看答案和解析>>

同步練習(xí)冊答案