【題目】南北朝時代的偉大科學家祖暅在數(shù)學上有突出貢獻,他在實踐的基礎上提出祖暅原理:冪勢既同,則積不容異”. 其含義是:夾在兩個平行平面之間的兩個幾何體,被平行于這兩個平行平面的任意平面α所截,如果截得的兩個截面的面積總相等,那么這兩個幾何體的體積相等.如圖,夾在兩個平行平面之間的兩個幾何體的體積分別為V1,V2,被平行于這兩個平面的任意平面截得的兩個截面面積分別為S1,S2,則(

A.如果S1,S2總相等,則V1=V2

B.如果S1=S2總相等,則V1V2不一定相等

C.如果V1=V2 ,則S1,S2總相等

D.存在這樣一個平面α使S1=S2相等,則V1=V2

【答案】A

【解析】

由祖暅原理的含義直接判斷即可得出答案.

如圖所示:

由祖暅原理的含義可得當平面,并且和平行的平面截得兩個幾何體的所得的截面面積時,,則A選項正確.

故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】過拋物線的焦點的直線交拋物線于兩點,分別過作準線的垂線,垂足分別為兩點,以為直徑的圓過點,則圓的方程為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某校高三的學生中隨機抽取了100名學生,統(tǒng)計了某次數(shù)學?伎荚嚦煽?nèi)绫恚?/span>

(1)請在頻率分布表中的①、②位置上填上相應的數(shù)據(jù),并在給定的坐標系中作出這些數(shù)據(jù)的頻率分布直方圖,再根據(jù)頻率分布直方圖估計這100名學生的平均成績;

(2)從這100名學生中,采用分層抽樣的方法已抽取了 20名同學參加“希望杯數(shù)學競賽”,現(xiàn)需要選取其中3名同學代表高三年級到外校交流,記這3名學生中“期中考試成績低于120分”的人數(shù)為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在印度有一個古老的傳說:舍罕王打算獎賞國際象棋的發(fā)明人一宰相西薩·班·達依爾.國王問他想要什么,他對國王說:“陛下,請您在這張棋盤的第1個小格里,賞給我1粒麥子,在第2個小格里給2粒,第3小格給4粒,以后每1小格都比前1小格加1倍.請您把這樣擺滿棋盤上所有的64格的麥粒,都賞給您的仆人吧!”國王覺得這要求太容易滿足了,就同意給他這些麥粒.當人們把一袋一袋的麥子搬來開始計數(shù)時,國王才發(fā)現(xiàn)就是把全印度甚至全世界的麥粒全拿來,也滿足不了那位宰相的要求.那么,宰相要求得到的麥粒到底有多少粒?如圖所示的程序框圖是為了計算上面這個問題而設計的,那么在“”和“”中,可以先后填入(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】鄭一號宇宙飛船返回艙順利到達地球后,為了及時將航天員救出,地面指揮中心的在返回艙預計到達的區(qū)域安排了同一條直線上的三個救援中心(記為).當返回艙距地面1萬米的點的時(假定以后垂直下落,并在點著陸),救援中心測得飛船位于其南偏東60°方向,仰角為60°,救援中心測得飛船位于其南偏西30°方向,仰角為30°,救援中心測得著陸點位于其正東方向.

1)求兩救援中心間的距離;

2救援中心與著陸點間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正方形中,,分別為,的中點,的中點,沿,,將正方形折起,使,,重合于點,在構成的四面體中,下列結論中錯誤的是( )

A. 平面

B. 直線與平面所成角的正切值為

C. 異面直線和求所成角為

D. 四面體的外接球表面積為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2016·威海模擬)三人參加某娛樂闖關節(jié)目,假設甲闖關成功的概率是,乙、丙兩人同時闖關成功的概率是,甲、丙兩人同時闖關失敗的概率是,且三人各自能否闖關成功相互獨立.

(1)求乙、丙兩人各自闖關成功的概率;

(2)ξ表示三人中最終闖關成功的人數(shù),求ξ的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】廣場舞是現(xiàn)代城市群眾文化、娛樂發(fā)展的產(chǎn)物,也是城市精神文明建設成果的一個重要象征.2018年某校社會實踐小組對某小區(qū)廣場舞的開展狀況進行了年齡的調查,隨機抽取了40名廣場舞者進行調查,將他們年齡分成6段:,,,,,后得到如圖所示的頻率分布直方圖.

1)根據(jù)廣場舞者年齡的頻率分布直方圖,估計廣場舞者的平均年齡;

2)若從年齡在內(nèi)的廣場舞者中任取2名,求選中的兩人中恰有一人年齡在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大型高端制造公司為響應《中國制造2025》中提出的堅持“創(chuàng)新驅動、質量為先、綠色發(fā)展、結構優(yōu)化、人才為本”的基本方針,準備加大產(chǎn)品研發(fā)投資,下表是該公司2017年5~12月份研發(fā)費用(百萬元)和產(chǎn)品銷量(萬臺)的具體數(shù)據(jù):

(1)根據(jù)數(shù)據(jù)可知之間存在線性相關關系

(i)求出關于的線性回歸方程(系數(shù)精確到);

(ii)若2018年6月份研發(fā)投人為25百萬元,根據(jù)所求的線性回歸方程估計當月產(chǎn)品的銷量;

(2)為慶祝該公司9月份成立30周年,特制定以下獎勵制度:以(單位:萬臺)表示日銷量, ,則每位員工每日獎勵元;,則每位員工每日獎勵元;,則每位員工每日獎勵元現(xiàn)已知該公司9月份日銷量 (萬臺)服從正態(tài)分布,請你計算每位員工當月(按天計算)獲得獎勵金額總數(shù)大約多少元.

參考數(shù)據(jù): ,.

參考公式:對于一組數(shù)據(jù),,其回歸直線的斜率和截距的最小二乘估計分別為: .

若隨機變量服從正態(tài)分布,則 .

查看答案和解析>>

同步練習冊答案