精英家教網 > 高中數學 > 題目詳情

【題目】已知且滿足不等式

1 求不等式

2若函數在區(qū)間有最小值為,求實數值.

【答案】(1);(2).

【解析】試題分析:1)運用指數不等式的解法,可得的范圍,再由對數不等式的解法,可得解集;(2)由題意可得函數遞減,可得最小值,解方程可得的值.

試題解析:(1)∵22a+125a-2

2a+15a-2,即3a3

a1,

a0,a1

0a1

loga3x+1)<loga7-5x).

∴等價為, ,

即不等式的解集為( ).

2)∵0a1

∴函數y=loga2x-1)在區(qū)間[3,6]上為減函數,

∴當x=6時,y有最小值為-2 loga11=-2,

a-2==11, 解得a=.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,半圓AOB是某市休閑廣場的平面示意圖,半徑OA的長為10,管理部門在A,B兩處各安裝好一個光源,其相應的光強度分別為4和9,根據光學原理,地面上某處照度y與光強度I成正比,與光源距離x的平方成反比,即y= (k為比例系數),經測量,在弧AB的中心C處的照度為130.(C處的照度為A,B兩處光源的照度之和)
(1)求比例系數k的值;
(2)現在管理部門計劃在半圓弧AB上,照度最小處增設一個光源P,試問新增光源P安裝在什么位置?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在中, ,四邊形是邊長為的正方形,平面平面,若, 分別是的中點.

(1)求證: 平面;

(2)求證:平面平面;

(3)求幾何體的體和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=lnx.
(1)設h(x)為偶函數,當x<0時,h(x)=f(﹣x)+2x,求曲線y=h(x)在點(1,﹣2)處的切線方程;
(2)設g(x)=f(x)﹣mx,求函數g(x)的極值;
(3)若存在x0>1,當x∈(1,x0)時,恒有f(x)> 成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有以下判斷: ①f(x)= 與g(x)= 表示同一函數;
②函數y=f(x)的圖象與直線x=1的交點最多有1個;
③f(x)=x2﹣2x+1與g(t)=t2﹣2t+1是同一函數;
④若f(x)=|x﹣1|﹣|x|,則f(f( ))=0.
其中正確判斷的序號是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:x2+2x﹣3>0;命題q: >1,若“(¬q)∧p”為真,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數時取得最小值,且函數的圖象在軸上截得的線段長為

(1)求函數的解析式;(2)當時,函數的最小值為,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于四面體有以下命題:

1)若,則過向底面作垂線,垂足為底面的外心;

2)若, ,則過向底面作垂線,垂足為底面的內心;

3)四面體的四個面中,最多有四個直角三角形;

4若四面體6條棱長都為1,則它的內切球的表面積為.

其中正確的命題是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知極坐標系的極點與直角坐標系的原點重合,極軸與x軸的非負半軸重合.曲線 (t為參數),曲線C2的極坐標方程為ρ=ρcos2θ+8cosθ. (Ⅰ)將曲線C1 , C2分別化為普通方程、直角坐標方程,并說明表示什么曲線;
(Ⅱ)設F(1,0),曲線C1與曲線C2相交于不同的兩點A,B,求|AF|+|BF|的值.

查看答案和解析>>

同步練習冊答案