【題目】如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F為CD的中點.
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE;
(3)求直線BF和平面BCE所成角的正弦值.
【答案】(1)見解析(2)見解析(3)
【解析】
(1)取CE的中點G,由三角形的中位線性質(zhì)證明四邊形GFAB為平行四邊形,得到AF∥BG,從而證明AF∥平面BCE.
(2)通過證明AF⊥CD,DE⊥AF,從而證明AF⊥平面CDE,再利用BG∥AF證明BG⊥平面CDE,進而證明平面BCE⊥平面CDE.
(3)在平面CDE內(nèi),過F作FH⊥CE于H,由平面BCE⊥平面CDE,得 FH⊥平面BCE,故∠FBH為BF和平面BCE所成的角,解Rt△FHB求出∠FBH的正弦值.
(1)證明:取CE的中點G,連FG、BG.
∵F為CD的中點,∴GF∥DE且.
∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE,∴GF∥AB.
又,∴GF=AB.
∴四邊形GFAB為平行四邊形,則AF∥BG.
∵AF平面BCE,BG平面BCE,
∴AF∥平面BCE.
(2)證明:∵△ACD為等邊三角形,F為CD的中點,∴AF⊥CD.
∵DE⊥平面ACD,AF平面ACD,∴DE⊥AF.
又CD∩DE=D,故AF⊥平面CDE.
∵BG∥AF,∴BG⊥平面CDE.
∵BG平面BCE,
∴平面BCE⊥平面CDE.
(3)解:在平面CDE內(nèi),過F作FH⊥CE于H,連BH.
∵平面BCE⊥平面CDE,∴FH⊥平面BCE.
∴∠FBH為BF和平面BCE所成的角.
設(shè)AD=DE=2AB=2a,則,,
Rt△FHB中,.
∴直線BF和平面BCE所成角的正弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰梯形中,,,E為CD中點,將沿AE折到的位置.
(1)證明:;
(2)當折疊過程中所得四棱錐體積取最大值時,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列,滿足:對任意正整數(shù),都有,,成等差數(shù)列,,,成等比數(shù)列,且,.
(Ⅰ)求證:數(shù)列是等差數(shù)列;
(Ⅱ)求數(shù)列,的通項公式;
(Ⅲ)設(shè)=++…+,如果對任意的正整數(shù),不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若無窮數(shù)列滿足:只要,必有,則稱具有性質(zhì).
(1)若具有性質(zhì),且,求;
(2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是等比數(shù)列,,,.判斷是否具有性質(zhì),并說明理由;
(3)設(shè)是無窮數(shù)列,已知.求證:“對任意都具有性質(zhì)”的充要條件為“是常數(shù)列”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題12分)已知且,函數(shù), ,
記
(1)求函數(shù)的定義域及其零點;
(2)若關(guān)于的方程在區(qū)間內(nèi)僅有一解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩個三口之家,共個大人,個小孩,約定星期日乘紅色、白色兩輛轎車結(jié)伴郊游,每輛車最多乘坐人,其中兩個小孩不能獨坐一輛車,則不同的乘車方法種數(shù)是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知、為橢圓()和雙曲線的公共頂點,、分為雙曲線和橢圓上不同于、的動點,且滿足,設(shè)直線、、、的斜率分別為、、、.
(1)求證:點、、三點共線;
(2)求的值;
(3)若、分別為橢圓和雙曲線的右焦點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘數(shù)學(xué)家阿波羅尼斯在其巨著《圓錐曲線論》中提出“在同一平面上給出三點,若其中一點到另外兩點的距離之比是一個大于零且不等于1的常數(shù),則該點軌跡是一個圓”現(xiàn)在,某電信公司要在甲、乙、丙三地搭建三座5G信號塔來構(gòu)建一個三角形信號覆蓋區(qū)域,以實現(xiàn)5G商用,已知甲、乙兩地相距4公里,丙、甲兩地距離是丙、乙兩地距離的倍,則這個三角形信號覆蓋區(qū)域的最大面積(單位:平方公里)是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在高山滑雪運動的曲道賽項目中,運動員從高處(起點)向下滑,在滑行中運動員要穿過多個高約0.75米,寬4至6米的旗門,規(guī)定:運動員不經(jīng)過任何一個旗門,都會被判一次“失格”,滑行時間會被增加,而所用時間越少,則排名越高.已知在參加比賽的運動員中,有五位運動員在滑行過程中都有三次“失格”,其中
(1)甲在滑行過程中依次沒有經(jīng)過,,三個旗門;
(2)乙在滑行過程中依次沒有經(jīng)過,,三個旗門;
(3)丙在滑行過程中依次沒有經(jīng)過,,三個旗門;
(4)丁在滑行過程中依次沒有經(jīng)過,,三個旗門;
(5)戊在滑行過程中依次沒有經(jīng)過,,三個旗門.
根據(jù)以上信息,,,,,,,,這8個旗門從上至下的排列順序共有( )種可能.
A.6B.7C.8D.12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com