空間四點O(0,0,0),A(0,0,3),B(0,3,0),C(3,0,0),O點到平面ABC的距離為
 
考點:點、線、面間的距離計算
專題:計算題,空間位置關(guān)系與距離
分析:由題意,O,A,B,C可看做正方體中的四個頂點,正方體的棱長為3,利用等體積,可求O點到平面ABC的距離.
解答: 解:由題意,O,A,B,C可看做正方體中的四個頂點,正方體的棱長為3,則△ABC的面積為
3
4
•(3
2
)2
=
9
3
2

設(shè)O點到平面ABC的距離為d,則
1
3
1
2
•3•3•3
=
1
3
9
3
2
•d,
解得d=
3

故答案為:
3
點評:將O,A,B,C可看做正方體中的四個頂點,利用等體積,是求O點到平面ABC的距離的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知l1為函數(shù)f(x)=x2(x∈[0,2])在P(t,t2)(t∈(0,2))處的切線,l2為x=2,f(x),l1,l2與x軸所圍成的圖形如圖所示.
(1)請用t表示S1+S2=g(t);
(2)求g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正三角形ABC內(nèi)接于半徑為R的圓O.
(1)若在線段AB上任取一點D,求線段AD、DB的長都不小于
1
2
R的概率;
(2)若隨機地向圓內(nèi)丟一粒豆子,假設(shè)豆子落在圓內(nèi)任一點是等可能的,求豆子落入正三角形ABC內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E為BB1中點.
(Ⅰ)證明:AC⊥D1E;
(Ⅱ)求DE與平面AD1E所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)A,B為兩個隨機事件,若P(B)=
1
2
,P(A|B)=
1
3
,則P(AB)的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
x2(x>0)
2(x=0)
0(x<0)
,則f(f(f(-2)))的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中a,b,c分別為角A,B,C所對的邊,已知c(acosB-bcosA)=b2,且△ABC的面積為
1
2
b2,則∠C=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C1的參數(shù)方程為
x=4+5cost
y=5+5sint
(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2sinθ.
(Ⅰ)把C1的參數(shù)方程化為極坐標方程;
(Ⅱ)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,一個類似楊輝三角的數(shù)陣,則第n(n≥2)的第2個數(shù)為
 

查看答案和解析>>

同步練習冊答案