【題目】已知直線a、b和平面,下列說法中正確的有______ .
若,則;
若,則;
若,則;
若直線,直線,則;
若直線a在平面外,則;
直線a平行于平面內(nèi)的無數(shù)條直線,則;
若直線,那么直線a就平行于平面內(nèi)的無數(shù)條直線.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且在和處取得極值.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)設(shè)函數(shù),是否存在實數(shù),使得曲線與軸有兩個交點,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在半徑為R的圓桌上擺放同樣大小的半徑為r的硬幣.要求硬幣不準(zhǔn)露出圓桌面邊緣,并且所擺硬幣彼此不能重疊.當(dāng)擺放n枚硬幣之后,圓桌上就不能再多擺放一枚這種硬幣了.求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水葫蘆原產(chǎn)于巴西,年作為觀賞植物引入中國. 現(xiàn)在南方一些水域水葫蘆已泛濫成災(zāi)嚴(yán)重影響航道安全和水生動物生長. 某科研團隊在某水域放入一定量水葫蘆進行研究,發(fā)現(xiàn)其蔓延速度越來越快,經(jīng)過個月其覆蓋面積為,經(jīng)過個月其覆蓋面積為. 現(xiàn)水葫蘆覆蓋面積(單位)與經(jīng)過時間個月的關(guān)系有兩個函數(shù)模型與可供選擇.
(參考數(shù)據(jù): )
(Ⅰ)試判斷哪個函數(shù)模型更合適,并求出該模型的解析式;
(Ⅱ)求原先投放的水葫蘆的面積并求約經(jīng)過幾個月該水域中水葫蘆面積是當(dāng)初投放的倍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某糧庫擬建一個儲糧倉如圖所示,其下部是高為2的圓柱,上部是母線長為2的圓錐,現(xiàn)要設(shè)計其底面半徑和上部圓錐的高,若設(shè)圓錐的高為,儲糧倉的體積為.
(1)求關(guān)于的函數(shù)關(guān)系式;(圓周率用表示)
(2)求為何值時,儲糧倉的體積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個二次函數(shù)y=f(x)的圖象
(1)寫出這個二次函數(shù)的零點
(2)求這個二次函數(shù)的解析式
(3)當(dāng)實數(shù)k在何范圍內(nèi)變化時,函數(shù)g(x)=f(x)-kx在區(qū)間[-2,2]上是單調(diào)函數(shù)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,過圓O外一點P作圓的切線PC,切點為C,割線PAB、割線PEF分別交圓O于A與B、E與F.已知PB的垂直平分線DE與圓O相切.
(1)求證:DE∥BF;
(2)若 ,DE=1,求PB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“雙曲線的方程為 ”是“雙曲線的漸近線方程為 ”的( )
A. 充分不必要條件 B. 必要不充分條件
C. 充分必要條件 D. 既不充分也不必要條件
【答案】A
【解析】雙曲線的方程為,則漸近線方程為,漸近線方程為: ,反之當(dāng)漸近線方程為時,只需要滿足,等軸雙曲線即可.故選擇充分不必要條件.
故答案為:A.
【題型】單選題
【結(jié)束】
10
【題目】如圖,為測量河對岸塔 的高,先在河岸上選一點 ,使 在塔底 的正東方向上,在點 處測得 點的仰角為 ,再由點 沿北偏東 方向走 到位置 ,測得 ,則塔 的高是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的方程為,過點的直線與拋物線相交于兩點,分別過點作拋物線的兩條切線和,記和相交于點.
(1)證明:直線和的斜率之積為定值;
(2)求證:點在一條定直線上.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com