某幾何體的三視圖如圖所示,則該幾何體的表面積等于( 。
A、64B、92C、78D、56
考點(diǎn):由三視圖求面積、體積
專(zhuān)題:計(jì)算題,空間位置關(guān)系與距離
分析:由三視圖知幾何體為一四棱柱,且四棱柱的高為4,底面為直角梯形,直角梯形的直角腰為4,兩底邊長(zhǎng)分別為2,5,求得另一腰長(zhǎng),把數(shù)據(jù)代入表面積公式計(jì)算.
解答: 解:由三視圖知幾何體為一四棱柱,且四棱柱的高為4,
底面為直角梯形,直角梯形的直角腰為4,兩底邊長(zhǎng)分別為2,5,另一腰長(zhǎng)為
42+32
=5;
∴幾何體的表面積S=S底面+S側(cè)面=2×
2+5
2
×4+(2+4+5+5)×4=92.
故選B.
點(diǎn)評(píng):本題考查了由三視圖求幾何體的表面積,由三視圖判斷幾何體的形狀及數(shù)據(jù)所對(duì)應(yīng)的幾何量是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(1+2x)2014=a0+a1x+a2x2+…+a2014x2014,則a0+a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x),g(x)分別由下表給出
x 1 2 3
f(x) 2 1 1
g(x) 3 2 1
(1)則f(1)的值為
 
,當(dāng)g(x)=2時(shí),x=
 

(2)則f[g(1)]的值為
 
,當(dāng)g[f(x)]=2時(shí),x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B、C是單位圓上三個(gè)互不相同的點(diǎn).若|
AB
|=|
AC
|
,則
AB
AC
的最小值是( 。
A、0
B、-
1
4
C、-
1
2
D、-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S7=28,S8=36,則S15=( 。
A、210B、120
C、64D、56

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,坐標(biāo)紙上的每個(gè)單元格的邊長(zhǎng)為1,由下往上的六個(gè)點(diǎn):1,2,3,4,5,6的橫縱坐標(biāo)分別對(duì)應(yīng)數(shù)列{an}(n∈N*)的前12項(xiàng),如下表所示:
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6
按如此規(guī)律下去,則a2013=( 。
A、501B、502
C、503D、504

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB=1,BC=2,
BA
BC
=
3
,則角B=( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的公差為-1,且a2+a7+a12=-6,
(1)求數(shù)列{an}的通項(xiàng)公式an與前n項(xiàng)和Sn;
(2)若{bn}是首項(xiàng)為4,公比為
1
2
的等比數(shù)列,前n項(xiàng)和為T(mén)n,求證:當(dāng)t>6時(shí),對(duì)任意n,m∈N*,Sn<Tm+t恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷函數(shù)f(x)=
x(1-x)(x<0)
x(1+x)(x>0)
的奇偶性.

查看答案和解析>>

同步練習(xí)冊(cè)答案