若關(guān)于x的不等式x2-ax-6a<0有解,且解區(qū)間的長(zhǎng)度不超過(guò)5個(gè)單位長(zhǎng),則a的取值范圍是


  1. A.
    -25≤a≤1
  2. B.
    a≤-25或a≥1
  3. C.
    -25≤a<0或1≤a<24
  4. D.
    -25≤a<-24或0<a≤1
D
分析:先根據(jù)不等式x2-ax-6a<0有解判斷出判別式大于0,得到a的范圍,再由解的區(qū)間長(zhǎng)度縮小a的范圍即可.
解答:設(shè)方程x2-ax-6a=0的兩根分別為x1,x2,則
△>0,∴a2+24a>0,∴a>0或a<-24
∵解區(qū)間的長(zhǎng)度就是方程x2-ax-6a=0的兩個(gè)根的距離
由韋達(dá)定理,可得x1+x2=a,x1•x2=-6a
所以(x1-x22=(x1+x22-4x1x2=a2+24a
∵長(zhǎng)度不超過(guò)五個(gè)單位長(zhǎng)
∴|x1-x2|≤5
∴(x1-x22≤25
∴a2+24a≤25
∴-25≤a≤1
綜上,-25≤a<-24或0<a≤1
故選D.
點(diǎn)評(píng):本題考查一元二次不等式的應(yīng)用,考查韋達(dá)定理,正確理解題意是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、若關(guān)于x的不等式x2-4x≥m對(duì)任意x∈[-1,1]恒成立,則實(shí)數(shù)m的取值范圍是
(-∞,-3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式x2-px-q<0的解集為(2,3),則關(guān)于x的不等式qx2-px-1>0的解集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式x2-ax+1≤0,ax2+x-1>0均不成立,則(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式x2-2ax+a2-ab+4≤0恰有一個(gè)解,則a2+b2的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義區(qū)間長(zhǎng)度m為這樣的一個(gè)量:m的大小為區(qū)間 右端點(diǎn)的值減去左端點(diǎn)的值.若關(guān)于x的不等式x2-x-6a<0有解,且解集的區(qū)間長(zhǎng)度不超過(guò)5個(gè)單位長(zhǎng),則a的取值范圍是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案