【題目】如圖所示,位于A處的信息中心獲悉:在其正東方向相距40海里的B處有一艘漁船遇險,在原地等待營救.信息中心立即把消息告知在其南偏西30°,相距20海里的C處的乙船,現(xiàn)乙船朝北偏東的方向即沿直線CB前往B處救援,則等于 ( )

A. B. C. D.

【答案】B

【解析】

利用余弦定理求出BC的數(shù)值,正弦定理推出∠ACB的余弦值,利用cosθ=cos(∠ACB+30°)展開求出cosθ的值.

如圖所示,

△ABC中,AB=40,AC=20,∠BAC=120°,

由余弦定理得BC2=AB2+AC2﹣2ABACcos120°=2800,

所以BC=20

由正弦定理得sin∠ACB=sin∠BAC=

∠BAC=120°∠ACB為銳角,故cos∠ACB=

cosθ=cos(∠ACB+30°)=cos∠ACBcos30°﹣sin∠ACBsin30°=

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某調(diào)查機(jī)構(gòu)觀察了某地100個新生嬰兒的體重,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖如圖,則新生嬰兒的體重在[3.2,4.0)(kg)的有人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體ABCD﹣A1B1C1D1中,E是棱DD1的中點.

(1)求直線BE與平面ABB1A1所成的角的正弦值;
(2)在棱C1D1上是否存在一點F,使B1F∥平面A1BE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex[ x3﹣2x2+(a+4)x﹣2a﹣4],其中a∈R,e為自然對數(shù)的底數(shù).
(1)若函數(shù)f(x)的圖象在x=0處的切線與直線x+y=0垂直,求a的值;
(2)關(guān)于x的不等式f(x)<﹣ ex在(﹣∞,2)上恒成立,求a的取值范圍;
(3)討論函數(shù)f(x)極值點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足an=3n﹣2,f(n)= + +…+ ,g(n)=f(n2)﹣f(n﹣1),n∈N*
(1)求證:g(2)> ;
(2)求證:當(dāng)n≥3時,g(n)>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠AB,C的對邊分別為, , ,若,

(1)求∠B的大小;

(2), ,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓G:=1(a>b>0)的離心率為,經(jīng)過左焦點F1(-1,0)的直線l與橢圓G相交于A,B兩點,y軸相交于點C,且點C在線段AB.

(1)求橢圓G的方程;

(2)|AF1|=|CB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex+bex , (b∈R),函數(shù)g(x)=2asinx,(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若b=﹣1,f(x)>g(x),x∈(0,π),求a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:x2-6x+5≤0,q:x2-2x+1-m2≤0(m>0).

(1)若m=2,且p∧q為真,求實數(shù)x的取值范圍;

(2)若p是q的充分不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案